时间复杂度专题讲解

1,算法效率

(1)算法的复杂度

算法在编写成可执行程序后,运行时需要耗费时间资源和空间(内存)资源 。因此衡量一个算法的好坏,一般 是从时间和空间两个维度来衡量的,即时间复杂度和空间复杂度。

时间复杂度主要衡量一个算法的运行快慢,而空间复杂度主要衡量一个算法运行所需要的额外空间。在计算 机发展的早期,计算机的存储容量很小。所以对空间复杂度很是在乎。但是经过计算机行业的迅速发展,计 算机的存储容量已经达到了很高的程度。所以我们如今已经不需要再特别关注一个算法的空间复杂度

2,时间复杂度

(1) 时间复杂度的概率

时间复杂度的定义:在计算机科学中,算法的时间复杂度是一个函数,它定量描述了该算法的运行时间。一 个算法执行所耗费的时间,从理论上说,是不能算出来的,只有你把你的程序放在机器上跑起来,才能知 道。但是我们需要每个算法都上机测试吗?是可以都上机测试,但是这很麻烦,所以才有了时间复杂度这个 分析方式。

一个算法所花费的时间与其中语句的执行次数成正比例,算法中的基本操作的执行次数,为算法 的时间复杂度。 即:找到某条基本语句与问题规模N之间的数学表达式,就是算出了该算法的时间复杂度。

我们来举个例子

// 请计算一下Func1中++count语句总共执行了多少次?
void Func1(int N)
{
  int count = 0;
  for (int i = 0; i < N ; ++ i)
{
  for (int j = 0; j < N ; ++ j)
 {
   ++count;
 }
}
 
for (int k = 0; k < 2 * N ; ++ k)
{
 ++count;
}
int M = 10;
while (M--)
{
 ++count;
}
printf("%d\n", count);
}

应为  F(N) = N^2 + 2*N + 10

N = 10         F(N) = 130

N = 100       F(N) = 10210

N = 1000     F(N) = 1002010

实际中我们计算时间复杂度时,我们其实并不一定要计算精确的执行次数,而只需要大概执行次数,那么这 里我们使用大O的渐进表示法。

(2)大O的渐进表示法

大O符号(Big O notation):是用于描述函数渐进行为的数学符号。

推导大O阶方法:

1、用常数1取代运行时间中的所有加法常数。

2、在修改后的运行次数函数中,只保留最高阶项。

3、如果最高阶项存在且不是1,则去除与这个项目相乘的常数。得到的结果就是大O阶。

使用大O的渐进表示法以后,Func1的时间复杂度为:O(N^2)

N = 10 F(N) = 100

N = 100 F(N) = 10000

N = 1000 F(N) = 1000000

通过上面我们会发现大O的渐进表示法去掉了那些对结果影响不大的项,简洁明了的表示出了执行次数。

另外有些算法的时间复杂度存在最好、平均和最坏情况:

最坏情况:任意输入规模的最大运行次数(上界)

平均情况:任意输入规模的期望运行次数

最好情况:任意输入规模的最小运行次数(下界)

例如:在一个长度为N数组中搜索一个数据x

最好情况:1次找到

最坏情况:N次找到

平均情况:N/2次找到

在实际中一般情况关注的是算法的最坏运行情况,所以数组中搜索数据时间复杂度为O(N)

(3)举例

1)例一

// 计算Func2的时间复杂度?
void Func2(int N)
{
 int count = 0;
 for (int k = 0; k < 2 * N ; ++ k)
 {
 ++count;
 }
 int M = 10;
 while (M--)
 {
 ++count;
 }
 printf("%d\n", count);
}

F(N) = 2*N + 10   --------------> O(N) 

2)例二

// 计算Func3的时间复杂度?
void Func3(int N, int M)
{
 int count = 0;
 for (int k = 0; k < M; ++ k)
 {
 ++count;
 }
 for (int k = 0; k < N ; ++ k)
 {
 ++count;
 }
 printf("%d\n", count);
}

O(M+N)      O(max(M,N))

如果M远大于N,O(M)

 如果N远大于M,O(N)

3)例三

// 计算Func4的时间复杂度?
void Func4(int N)
{
 int count = 0;
 for (int k = 0; k < 100; ++ k)
 {
 ++count;
 }
 printf("%d\n", count);
}

O(1)  代表常数次 

(4)常见复杂度对比

一般算法常见的复杂度如下:

(5)复杂度练习题 

1)消失的数字

面试题 17.04. 消失的数字 - 力扣(LeetCode)

数组nums包含从0n的所有整数,但其中缺了一个。请编写代码找出那个缺失的整数。你有办法在O(n)时间内完成吗?

思路一

先排序,再依次查找,如果下一个值不等于前一个+1,下一个值就是消失的数字

如果冒泡排序

void BubbleSort(int* a, int n)
{
 assert(a);
 for (size_t end = n; end > 0; --end)
 {
 int exchange = 0;
 for (size_t i = 1; i < end; ++i)
 {
 if (a[i-1] > a[i])
 {
 Swap(&a[i-1], &a[i]);
 exchange = 1;
 }
 }
 if (exchange == 0)
 break;
 }
}

N-1 + N-2 + N-3 + ... 2 + 1

即N*(N-1)/2      

-->O(N^2)

故不符合 O(n)

思路二

求和0-N,再依次减去数组中的值 ,剩下的值为消失的值

这种为O(N)

缺陷;N太大存在溢出风险

int missingNumber(int* nums, int numsSize)
{
    int N = numsSize;
    int ret = (0+N)*(N+1)/2;  //等差数列求和公式
    for(int i = 0;i < numsSize;++i)
    {
        ret -=nums[i];
    }
    return ret;
}
思路三

异或

相同的值异或==0

0和非0异或 == 非0

异或具有交换律

故可以新增数组值为0-N,新数组与原数组的值异或,结果即为消失的值

int missingNumber(int* nums, int numsSize)
{
    //对原数组异或
    int N = numsSize;
    int x = 0;
    for(int i = 0; i< numsSize; ++i)
    {
        x ^= nums[i];
    }
    //对0-N异或
    for(int j = 0; j <= N; ++j)
    {
        x ^= j;
    }
    return x;
}

2)旋转数组

189. 轮转数组 - 力扣(LeetCode)

给定一个整数数组 nums,将数组中的元素向右轮转 k 个位置,其中 k 是非负数。

真实的旋转次数为 k%=N

时间复杂度:O(K*N)   F(N) = (N-1)*(N-1)

最好情况    k%N == 0

最坏情况    k%N == N-1       ----->  O(N^2)

 思路一

思路二

void reverse(int* a,int left,int right)
{
    while(left < right)
    {
        int tmp = a[left];
        a[left] = a[right];
        a[right] = tmp;
        ++left;
        --right;
    }
}
void rotate(int* nums, int numsSize, int k) 
{
    k %= numsSize;
    reverse(nums,0,numsSize-k-1);
    reverse(nums,numsSize-k,numsSize-1);
    reverse(nums,0,numsSize-1);
}

(6)更复杂的时间复杂度

 1)例一

void func(int n)
{
	int x = 0;
	for (int i = 1; i < n; i *= 2)
	{
		++x;
	}
	printf("%d\n", x);
}

1*2*2*2*2......*2 = N

假设循环走x次,就是x个2相乘

即2^x = N       x = log2 N

时间复杂度: O(log N)

2)例二

// 计算BinarySearch的时间复杂度?
int BinarySearch(int* a, int n, int x)
{
 assert(a);
 int begin = 0;
 int end = n-1;
 // [begin, end]:begin和end是左闭右闭区间,因此有=号
 while (begin <= end)
 {
 int mid = begin + ((end-begin)>>1);
 if (a[mid] < x)
 begin = mid+1;
 else if (a[mid] > x)
 end = mid-1;
 else
 return mid;
 }
 return -1;
}

二分查找  N  N/2  N/4  N/8  ......... 1

情况最坏:

N/2/2/2........../2 = 1

查找了多少次,就是处理多少2

假设查找x次  2^x = N  即 x = log2 N

3)例三

// 计算阶乘递归Fac的时间复杂度?
long long Fac(size_t N)
{
 if(0 == N)
 return 1;
 
 return Fac(N-1)*N;
}

Fac(N)--------->Fac(N-1)------------>Fac(N-2)....................------->Fac(1)----------->Fac(0)

N+1次

即O(N)

4)例四

// 计算斐波那契递归Fib的时间复杂度?
long long Fib(size_t N)
{
 if(N < 3)
 return 1;
 
 return Fib(N-1) + Fib(N-2);
}

为等比数列

累计递归调用次数为 2^0 = 2^1 = ...+ 2^(N-2)

即 2^(N-1)-1            可以用等比数列求和公式或者错位相减法

故O(2^N)

此代码不符合实际

可以优化为

unsigned long long Fib(size_t N)
{
	unsigned long long f1 = 1;
	unsigned long long f2 = 1;
	unsigned long long f3 = 0;
	for (size_t i = 3; i <= N; i++)
	{
		f3 = f1 + f2;
		f1 = f2;
		f2 = f3;
	}

	return f3;
}

  • 19
    点赞
  • 31
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值