jcyzoj1547: D

给定一张 n n n个点的图,初始没有边,有 q q q次操作:
1 x y :加一条 x x x之间的边,边权为 y y y
2 x :询问从点 x x x开始,不经过重复的点,能走到的最远距离。
保证加边的过程中对于任意两个点之间,只有唯一的一条简单路径。

树上一个点距离最远的点有一个性质,就是对每个连通块,我们维护其的一条直径(即距离最远的两个点) x x x, y y y, 如果有多个可以任意维护一个,然后对于点 z z z, 连通块内与 z z z距离最远的点距离为 m a x ( d ( x , z ) , d ( y , z ) ) max(d(x, z), d(y,z)) max(d(x,z),d(y,z)), 其中 d ( a , b ) d(a, b) d(a,b)表示 a , b a, b a,b的树上距离。这个性质可以通过反证法。
于是我们开一个并查集维护连通块,因为只有加边,所以可以考虑启发式合并,当连通两个点时,将小的连通块合并进大的中,并且更新直径。直径的端点只可能是原连通块直径的端点(共 4 4 4个点).
这里需要一个支持加边和查询两点距离的数据结构,可以使用启发式合并的倍增表,这部分时间复杂度为 O ( n log ⁡ 2 n ) O(n\log^2n) O(nlog2n).
总时间复杂度 O ( n log ⁡ 2 n + m log ⁡ n ) O(n\log^2n + m\log n) O(nlog2n+mlogn).
代码如下:

#include <bits/stdc++.h>

using namespace std;

inline int read() {
	int x = 0, f = 0; char ch = getchar();
	while (!isdigit(ch)) f = ch == '-', ch = getchar();
	while (isdigit(ch)) x = (x << 3) + (x << 1) + (ch ^ 48), ch = getchar();
	return f ? -x : x;
}

inline void write(int x) {
	if (x < 10) putchar(x + '0'); 
	else write(x / 10), putchar(x % 10 + '0'); 
}

const int N = 3e5 + 10, M = 6e5 + 10; 
int head[N], nex[M], ver[M], tot = 1;  
int type, n, q; 
int rt[N], siz[N], s[N], t[N]; 
int dep[N], fa[N][20], d[N];

void add(int x, int y) { 
	ver[++tot] = y; nex[tot] = head[x]; head[x] = tot;
	ver[++tot] = x; nex[tot] = head[y]; head[y] = tot;
}

int find(int x) { return rt[x] == x ? x : rt[x] = find(rt[x]); } 

void dfs(int x, int father) {
	dep[x] = dep[father] + 1; 
	fa[x][0] = father; 
	for (int j = 1; j < 20; ++j) {
		fa[x][j] = fa[fa[x][j - 1]][j - 1]; 
	}
	for (int i = head[x]; i; i = nex[i]) {
		int y = ver[i]; 
		if (y == father) continue; 
		dfs(y, x);  
	}
}

int lca(int x, int y) {
	if (dep[x] < dep[y]) swap(x, y); // dep[x] >= dep[y]; 
	int depth = dep[x] - dep[y]; 
	for (int j = 19; j >= 0; --j) {
		if ((depth >> j) & 1) {
			x = fa[x][j]; 
		}
	}
	if (x == y) return x; 
	for (int j = 19; j >= 0; --j) {
		if (fa[x][j] != fa[y][j]) {
			x = fa[x][j]; y = fa[y][j]; 
		}
	}
	return fa[x][0]; 
}

int dist(int x, int y) {
	int p = lca(x, y); 
	return dep[x] + dep[y] - dep[p] * 2; 
}

void link(int x, int y) {
	add(x, y); dfs(y, x); 
}

int dfs_d(int x, int la) {
	int res = x; 
	for (int i = head[x]; i; i = nex[i]) {
		if (i == (la ^ 1)) continue; 
		int y = ver[i]; d[y] = d[x] + 1; int v = dfs_d(y, i); 
		if (d[v] > d[res]) res = v;  
	} 
	return res; 
}

void upd(int& ss, int& tt, int x, int y) {
	if (dist(x, y) > dist(ss, tt)) ss = x, tt = y; 
}

void update(int x, int y) {
//	d[x] = 1; s[x] = dfs_d(x, 0);  
//	d[s[x]] = 1; t[x] = dfs_d(s[x], 0); 
	int a = s[x], b = t[x], c = s[y], d = t[y]; 
	upd(s[x], t[x], c, d); 
	upd(s[x], t[x], a, c); upd(s[x], t[x], a, d); 
	upd(s[x], t[x], b, c); upd(s[x], t[x], b, d); 
}
 
void merge(int x, int y) {
	int rx = find(x), ry = find(y); 
	if (siz[rx] < siz[ry]) swap(x, y), swap(rx, ry); // siz[rx] >= siz[ry], y接在x上.
	link(x, y); rt[ry] = rx; siz[rx] += siz[ry]; update(rx, ry); 
}

int solve(int x) {
	int rx = find(x); 
	return max(dist(x, s[rx]), dist(x, t[rx])); 
}

int main() {
//	freopen("sample2.in", "r", stdin); freopen("sample2.out", "w", stdout); 
	type = read(); n = read(); q = read(); 
	for (int i = 1; i <= n; ++i) rt[i] = s[i] = t[i] = i, siz[i] = dep[i] = 1;  
	int la = 0; 
	while (q--) {
		int opt = read(), x = read(), y; 
		if (opt == 1) y = read(); 
		if (type) x ^= la, y ^= la; 
		if (opt == 1) merge(x, y); 
		else la = solve(x), write(la), putchar('\n'); 
	}
	return 0;
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值