根据先序和中序遍历输出后序遍历

测试样例

7
4 1 3 2 6 5 7
1 2 3 4 5 6 7

答案

2 3 1 5 7 6 4

 

 

#include<iostream>
using namespace std;
typedef struct BiTNode{
	struct BiTNode *lchild;
	struct BiTNode *rchild;
	int data;
}BiTNode, *BiTree;
 
BiTree creatTree(int *in, int *pre, int n){
	if(n <= 0)
		return NULL;
	else{
		BiTree T = new BiTNode;
		T->data = pre[0];
		int i;
		for(i = 0; i < n; i++){
			if(pre[0] == in[i])
				break;
		}
		T->lchild = creatTree(in, pre + 1, i);
		T->rchild = creatTree(in + i + 1, pre + i + 1, n - i - 1);
		return T;
	}
}
void postorderTraversal(BiTree BT){
	if(BT){
		
		postorderTraversal(BT->lchild);
		postorderTraversal(BT->rchild);
		cout << " " << BT->data;
	}
}
int main(){
	int n; 
	cin >> n;
	int in[32];
	int pre[32];
	BiTree T;
	 for(int i = 0; i < n; i++){
	 	cin >> pre[i];
	 }	
	 for(int i = 0; i < n; i++){
	 	cin >> in[i];
	 }
	T = creatTree(in, pre, n);
	cout << "Postorder:";
	postorderTraversal(T);
	return 0;
}

模板

前序数组 pre【】

中序数组 in【】

node* create(int preL, int preR, int inL, int inR){
	if(preL > preR){
		return NULL;
	}
	node* root = new node;
	root->data = pre[preL];
	int k;
	for(k = inL; k <= inR; k ++){
		if(in[k] == pre[preL]){
			break;
		}
	}
	int numLeft = k - inL;	//左子树节点个数
	
	//左子树的先序区间为[prel + 1, preL + numLeft] 中序区间为[inL, k-1]
	//返回左子树的根节点的根节点地址,赋值给root的左指针
	root->lchild = create(preL + 1, preL + numLeftm, inL, k - 1); 
	
	//右子树的先序区间为[preL + numLeft + 1,  preR], 中序区间为[k + 1, inR]
	//返回右子树的根节点地址,赋值给root的右指针
	root->rchild = create(preL + numLeft + 1, preR, k + 1, inR);
	return root; 
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值