自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

Harrytsz的博客

既然选择远方,便只顾风雨兼程。

  • 博客(459)
  • 资源 (10)
  • 收藏
  • 关注

转载 深度学习秋招面试题集锦(一)

这部分的面试题包含C++基础知识、python基础、概率相关、智力题相关、算法相关以及深度学习相关。后续还会不断补充,欢迎大家查阅!C++后台开发面试常见问题汇总Q1 : C++虚函数表剖析。A1 : CSDNQ2 : C++中虚析构函数的作用及其原理分析。A2 : CSDNQ3 : 结构体(struct)和联合体(union)的区别。A3 : CSDNQ4 : Define 和...

2019-10-04 10:38:31 338

转载 大神的ACM训练计划(详细)

看完人家的博客,发现任重道远。。。一位高手对我的建议:一般要做到50行以内的程序不用调试、100行以内的二分钟内调试成功.acm主要是考算法的,主要时间是花在思考算法上,不是花在写程序与debug上。 下面给个计划你练练:第一阶段:练经典常用算法,下面的每个算法给我打上十到二十遍,同时自己精简代码,因为太常用,所以要练到写时不用想,10-15分钟内打完,甚至关掉显...

2019-04-02 17:21:35 432

原创 设计模式 —— Python版

文章目录创建型1. Factory Method(工厂方法)2. Abstract Factory(抽象工厂)3. Builder(建造者)4. Prototype(原型)5. Singleton(单例)结构型6. Adapter Class/Object(适配器)7. Bridge(桥接)8. Composite(组合)9. Decorator(装饰)10. Facade(外观)11. Flyw...

2019-01-25 17:03:31 452

原创 计算机网络

标签 : 计算机网络Bilibili:https://www.bilibili.com/video/av9876107/?p=1文章目录第 1 章 计算机网络概述 —— OSI 参考模型第 1 章 计算机网络概述 —— OSI 参考模型OSI 参考模型:应用层: 所有能产生网络流量的程序。表示层: 在传输之前是否进行加密或压缩处理(二进制、ASCII)。会话层:**注:**会话...

2018-12-23 16:02:29 374

原创 百度自然语言处理

新建 AipNlp:AipNlp 是自然语言处理的 Python SDK 客户端,为使用自然语言处理的开发人员提供了一系列的交互方法。参考如下代码新建一个 AipNlp:from aip import AipNlp""" 你的 APPID AK SK """APP_ID = '15240036' #'你的 APP ID'A..

2018-12-22 16:53:14 2243 1

转载 Scikit-Learn (Sklearn) 中文文档 0.19

Scikit-Learn (Sklearn) 中文文档 0.19scikit-learn 是基于 Python 语言的机器学习工具。简单高效的数据挖掘和数据分析工具可供大家在各种环境中重复使用建立在 NumPy ,SciPy 和 matplotlib 上开源,可商业使用 - BSD许可证官网地址: scikit-learn(sklearn): http...

2018-12-08 11:13:27 725 2

原创 网络是怎样连接的(4)

1.4 委托协议栈发送信息1.4.1 数据收发操作概览知道了 IP 地址之后,就可以委托操作系统内部的协议栈向这个目标 IP 地址,也就是我们要访问的 Web 服务器发送消息了。要发送给 Web 服务器的 HTTP 消息是一种数字信息,因此也可以说是委托协议栈来发送数字信息。收发数字信息这一操作不仅限于浏览器,对于各种使用网络的应用程序来说都是共通的。因此,这一操作的过程也不仅适用于 Web,...

2018-11-03 17:44:51 533

原创 Markdown 中控制图片的大小 对齐方式

普通展示图片MarkDown中显示图片的语法是 ![图片描述](图片地址) 。但是这种方法只是单纯把图片显示出来,如果图片很大的话就会铺满屏幕或者超高,排版上不好看。通过img标签控制宽高<img src="http://pic15.photophoto.cn/20100615/0006019058815826_b.jpg" height="330" width="495"&gt...

2018-10-21 16:00:39 623

原创 Google MapReduce 中文版

摘要   MapReduce 是一个编程模型,也是一个处理和生成超大数据集的算法模型的相关实现。用户首先创建一个 Map 函数处理一个基于 key/value pair 的数据集合,输出中间的基于 key/value pair 的数据集合;然后再创建一个 Reduce 函数用来合并所有的具有相同中间 key 值的中间 value 值。现实世界中有很多满足上述处理模型的例子,本论文将详细描述这个...

2018-08-26 21:48:18 433

原创 Google File System 中文版

Google File System 中文版 1.0 版摘要   我们设计并实现了 Google GFS 文件系统,一个面向大规模数据密集型应用的、可伸缩的分布式文件系统。GFS 虽然运行在廉价的普遍硬件设备上,但是它依然了提供灾难冗余的能力,为大量客户机提供了高性能的服务。   虽然 GFS 的设计目标与许多传统的分布式文件系统有很多相同之处,但是,我们的设计还是以我们对自己的应...

2018-08-26 20:52:54 640

转载 深入理解分布式事务,高并发下分布式事务的解决方案

1、什么是分布式事务分布式事务就是指事务的参与者、支持事务的服务器、资源服务器以及事务管理器分别位于不同的分布式系统的不同节点之上。以上是百度百科的解释,简单的说,就是一次大的操作由不同的小操作组成,这些小的操作分布在不同的服务器上,且属于不同的应用,分布式事务需要保证这些小操作要么全部成功,要么全部失败。本质上来说,分布式事务就是为了保证不同数据库的数据一致性。2、分布式事务的产生的原因...

2018-07-23 11:19:41 225

转载 码农周刊分类整理

码农周刊的类别分的比较大,不易于后期查阅,所以我把每期的内容按语言或技术进行了分类整理。码农周刊官方网址 http://weekly.manong.io/一些不熟悉的领域分类可能不准确,请见谅15期为图书推荐,请直接浏览原地址56期为14年最受欢迎列表,请直接浏览原地址现在已整理到第91期。编程之外栏目里的文章和技术无直接关系,移到了talks.md文件里。 readme.

2017-02-27 20:40:57 20780 3

原创 如何解决全局工业相机飞拍拖影问题

这就要看具体的检测精度要求了,例如对于尺寸测量的项目,拖影对测量精度会有严重影响,在这种情况下,就会要求拖影长度尽可能短,要求不超过1/3像素,或者不超过一个像素等;除此之外,还可能与图像传感器(Sensor)有关系,一般来说,Sensor 在进行电荷读出过程中,同时也还是在接收外部光信号的输入,形成寄生光电荷,通常用寄生光灵敏度(Parasitic Light Sensitivity,缩写为 PLS)来表征。,物体运动的方向是水平方向,精度要求拖影不超过。,所以无法满足此飞拍运动场景的精度要求。

2022-11-23 13:56:11 437

原创 基于 OpenCV 的多目标模板匹配,并用聚类算法去除冗余匹配框

为了实现多目标匹配,我选用 OpenCV 和 SKlearn 两个库中的模板匹配和聚类算法来实现。

2022-11-01 10:52:17 375 1

原创 Qt 窗口操作函数(置顶、全屏,最大化最小化按钮设置等)

将要全屏的 Qt 子窗口调用 setWindowFlags(Qt::Window) 将其类型提升为顶级窗口模式,然后调用 showFullScreen() 函数将子窗口全屏显示。当然全屏后还要恢复正常,即调用 setWindowFlags(Qt::subwindow) 将子窗口设置为非顶级窗口,再调用 showNormal() 还原子窗口显示。在使用 QDialog 时,默认情况下只有 “这是什么” 和 “关闭” 按钮,但是我们习惯有最大化和最小化按钮。即得到屏幕分辨率,如 1024*768。

2022-09-18 18:40:41 857

转载 Python 解析配置模块之 configparser

该模块适用于配置文件的格式与 Windows ini 文件类似,可以包含一个或多个节(section),每个节可以有多个参数。

2022-07-08 19:03:10 74

原创 numpy vstack 和 column_stack

Python numpy 中的 hstack、vstack、column_stack

2022-06-27 16:22:33 265

转载 minidom 模块写入和解析 XML

Python minidom 模块写入和解析 XML 文件。

2022-06-27 14:52:02 110

原创 注意力机制

注意力机制或注意力池化会根据 query 有偏向性地去选择某一些 (key, value) pair,这里的注意力池化和普通池化层不一样的地方在于注意力池化多了一个 query 部分。

2022-06-02 11:49:45 130 1

原创 XGBoost 参数说明

文章目录General ParametersBooster ParametersTask Parameters首先 XGBoost 有两种接口,XGBoost 库自带的 API 和 Scikit-Learn 提供的 API,具体用法存在细微差别。在运行 XGBoost 之前, 我们必须设置三种类型的参数: (常规参数)general parameters,(提升器参数)booster parameters和(任务参数)task parameters。常规参数与我们用于提升的提升器有关,通常是树模型或

2022-05-28 19:38:35 179

转载 NeuralCF 推荐模型

文章目录一、导包二、读取数据三、特征编码处理四、使用具名元组为特征进行处理五、构建模型5.1 输入层5.2 Embedding层5.3 GML5.4 MLP5.5 输出层5.6 构建模型六、运转模型绘制网络结构图下图为 NeutralCF 的模型结构图,总共两个分支,第一个分支为GML,第二个为MLP,GML 通路将两个特征的 Embedding 向量进行内积操作,MLP 将两个特征的 Embedding 的向量进行拼接,然后使用多层感知机进行传播,然后将两个通路输出的向量进行拼接,导入全连接层(输出层)

2022-05-12 10:57:27 56

原创 基于深度学习的以图搜图

使用预训练的卷积神经网络提取图片中的特征,生成特征向量。利用图片库中所有图片数据构建 <id, feature vector> 数据。使用 Faiss 创建 Index ,利用 <id, feature vector> 数据生成索引。针对待检索图片,使用模型提取图片特征向量,然后使用 Index 检索 TopK 相似图片的 id。可视化检索结果1. 导包import osimport timeimport torchimport faissimport num.

2022-05-07 16:41:05 1128 3

原创 Pandas 合并

一、 按照行合并1. append用法和列表一样,不用在意参数里是不是有空列表(用列表代替一个参数),其他几个好像都不可这样a = []b = np.arange(5)print(a)print(b)d = np.append(a,b)print(d)---------输出----[][0 1 2 3 4][0. 1. 2. 3. 4.]2. c_np.c_是按行连接两个矩阵,就是把两矩阵左右相加,要求行数相等#例一a = np.arange(5)b = np.arang

2022-04-28 15:12:21 1477

原创 XGBoost 浅析

目标函数加法模型基学习器回归树表达式前向分步算法目标函数推导构建树的方法系统设计回归树XGBoost 属于加法模型,其中每个基学习器都采用回归树,采用前向分布算法逐步优化其中的每一个基学习器。按照优化模型的一般步骤,定义好模型之后就需要把目标函数写出来,然后把问题转化成一个求解最优值的问题。比如将损失函数降到最小。然后利用各种求解最优质的方法求解出基学习器中的参数。模型表达(加法模型)yiM^=∑j=1Mfj(xi)=∑j=1M−1fj(xi)+fj(M)(.

2022-04-13 11:36:49 945

原创 神经网络是什么?如何直观理解它的能力极限?它是如何无限逼近真理?

神经网络的基本单元就是一个一个的感知机,感知机有两部分组成:线性部分和激活函数部分。一个感知机的能力是有限的,他只能将数据进行二分,而且这些数据还必须是线性可分的。普遍逼近定理: 只要神经网络有一个隐藏层,它就可以任意逼近一个连续函数。这就让我想到了傅里叶级数,傅里叶级数其实就是把一个复杂的函数拆解成一个一个的圆周运动或者叫正弦波。神经网络也一样,他也是把一个复杂函数拆解成一个一个感知机。说到底就是一个线性函数+一个激活函数的形式。都是化复杂为简单。傅里叶级数和神经网络很像,傅里叶级数用正弦函数去逼近任

2022-04-07 15:10:55 964

原创 ERROR 1396 (HY000): Operation ALTER USER failed for ‘root‘@‘localhost‘

Ubuntu20 安装 MySQL8.0 版本,使用 sudo mysql 无密码登录。sudo mysql -uroot -p# 无需输入密码,直接 Enter 即可进入mysql> 输入密码mysql> use mysql;mysql> select user,host from user;+------------------+-----------+| user | host |+------------------+-----

2022-03-26 00:04:53 1110

原创 腾讯云服务器下利用 Docker 极速搭建 Spark 集群和 HDFS 集群

搭建 Spark 和 hdfs 的集群环境会消耗一些时间和精力,处于学习和开发阶段的同学关注的是 Spark应用的开发,他们希望整个环境能快速搭建好,从而尽快投入编码和调试,今天咱们就借助 Docker 容器,极速搭建和体验 Spark 和hdfs 的集群环境.实战环境信息以下是本次实战涉及的版本号:操作系统:腾讯云 Ubuntu 服务器hadoop:2.8Spark:2.3docker:17.03.2-cedocker-compose:1.23.2极速搭建 Spark 集群和 hdfs

2022-03-25 14:12:30 2848

原创 VS Code 下载速度太慢

首先打开 VS Code 官网找到需要下载的版本,点击下载。此时浏览器开始下载安装包,右键下载进度,选择复制下载链接。将复制的下载链接粘贴到浏览器中,并且修改红框中的地址将红框内的部分更换为如下内容:vscode.cdn.azure.cn更新后的地址为:https://vscode.cdn.azure.cn/stable/c722ca6c7eed3d7987c0d5c3df5c45f6b15e77d1/VSCodeUserSetup-x64-1.65.2.exe此时,VS Cod

2022-03-23 17:48:40 369 1

原创 生成式深度学习

我们的感知模式、语言和艺术作品都具有统计结构。学习这种结构是深度学习算法所擅长的。机器学习模型能够对图像、音乐和故事的统计潜在空间(latentspace)(latent space)(latentspace)进行学习,然后从这个空间中采样,创造出于模型在训练数据中所见到的艺术作品具有相似特征的新作品。当然,这种采样本身并不是艺术创作行为。它只是一种数学运算,算法并没有关于人类生活、人类情感或我们人生经验的基础知识。相反,它从一种与我们的经验完全不同的经验中进行学习。作为人类旁观者,只能靠我们的解释才能对模

2022-03-16 23:53:16 953

原创 Tensorflow -- feature_column

特征列通常用于对结构化数据实施特征工程时候使用,图像或者文本数据一般不会用到特征列。1. 特征列用法使用特征列可以将类别型特征转换为 one-hot 编码特征,将连续型特征构建成分桶特征,以及对多个特征生成交叉特征等。要创建特征列,请调用 tf.feature_column 模块的函数。该模块中常用的九个函数如下图所示,所有九个函数都会返回一个 Categorical-Column 或一个 Dense-Column 对象,但却不会返回 bucketized_column,后者继承至这两个类。注意:所

2022-03-16 16:06:41 1322

原创 C++ 类模板 “无法解析的外部符号”的解决方案

C++使用类模板时,按照通用的.h文件与.cpp文件分开方式会报“无法解析的外部符号”错误,其根本原因在于编译器针对类模板不支持分离编译(利用VC助手产生函数实现时,也会自动加到.h文件而非.cpp文件)。针对此问题,解决方案有:将函数申明和实现全部写在.h文件中;如果非要.h文件与.cpp文件分开,则可在使用类模板的文件中,同时包含类模板的.h文件和.cpp文件#include "MyClass.h"#include "MyClass.cpp"...

2022-03-11 11:58:30 2799

转载 久别重逢话双塔

久别重逢话双塔转载至: https://zhuanlan.zhihu.com/p/428396126正文开始之前,先声明两点:双塔是“召回”+“粗排”的绝对主力模型。但是要让双塔在召回、粗排中发挥作用,带来收益,只改进双塔结构是远远不够的。如何采样以减少“样本选择偏差”、如何保证上下游目标一致性、如何在双塔中实现多任务间的信息转移…,都是非常重要的课题。但是受篇幅限制,本文只聚集于双塔模型结构上的改进。双塔分离:成也萧何,败也萧何双塔的模型结构很简单。训练的时候将用户侧的信息喂入一个DNN

2022-03-04 09:08:26 133

原创 蒙特卡罗方法与马尔科夫链

一. 蒙特卡罗方法蒙特卡罗是什么?赌城!蒙特卡洛是摩纳哥公国的一座城市,位于欧洲地中海之滨、法国的东南方,属于一个版图很小的国家摩纳哥公国,世人称之为“赌博之国”、“袖珍之国”、“邮票小国”。蒙特卡洛的赌业,海洋博物馆的奇观,格蕾丝王妃的下嫁,都为这个小国增添了许多传奇色彩,作为世界上人口最密集的一个国度,摩纳哥在仅有1.95平方千米的国土上聚集了3.3万的人口,可谓地窄人稠。但相对于法国,摩纳哥的地域实在是微乎其微,这个国中之国就像一小滴不慎滴在法国版图内的墨汁,小得不大会引起人去注意它的存在。蒙特

2022-02-23 20:12:14 583

原创 Gibbs采样(四)

在 MCMCMCMCMCMC采样和M−HM-HM−H采样中,我们讲到了 M−HM-HM−H 采样已经可以很好的解决蒙特卡罗方法需要的任意概率分布的样本集的问题。但是 M−HM-HM−H 采样有两个缺点:一是需要计算接受率,在高维时计算量大。并且由于接受率的原因导致算法收敛时间变长。二是有些高维数据,特征的条件概率分布好求,但是特征的联合分布不好求。因此需要一个好的方法来改进 M−HM-HM−H 采样,这就是我们下面讲到的 GibbsGibbsGibbs 采样。1. 重新寻找合适的细致平稳条件在

2022-02-22 19:12:31 350

原创 MCMC采样和M-H采样 (三)

在马尔科夫链中我们讲到给定一个概率平稳分布 π\piπ, 很难直接找到对应的马尔科夫链状态转移矩阵 PPP。而只要解决这个问题,我们就可以找到一种通用的概率分布采样方法,进而用于蒙特卡罗模拟。本篇我们就讨论解决这个问题的办法:MCMCMCMCMCMC 采样和它的易用版 M−HM-HM−H 采样。1. 马尔科夫链的细致平稳条件在解决从平稳分布 π\piπ, 找到对应的马尔科夫链状态转移矩阵 PPP 之前,我们还需要先看看马尔科夫链的细致平稳条件。定义如下:如果非周期马尔科夫链的状态转移矩阵 PPP 和概

2022-02-22 18:10:38 243

原创 马尔科夫链(二)

在蒙特卡罗 MCMCMCMCMCMC (一)方法中,我们讲到了如何用蒙特卡罗方法来随机模拟求解一些复杂的连续积分或者离散求和的方法,但是这个方法需要得到对应的概率分布的样本集,而想得到这样的样本集很困难。因此我们需要本篇讲到的马尔科夫链来帮忙。1. 马尔科夫链概述马尔科夫链定义本身比较简单,它假设某一时刻状态转移的概率只依赖于它的前一个状态。举个形象的比喻,假如每天的天气是一个状态的话,那个今天是不是晴天只依赖于昨天的天气,而和前天的天气没有任何关系。当然这么说可能有些武断,但是这样做可以大大简化模型的

2022-02-22 16:02:57 59

原创 MCMC 蒙特卡罗方法 (一)

作为一种随机采样方法,马尔科夫链蒙特卡罗(Markov Chain Monte Carlo,以下简称MCMC)在机器学习,深度学习以及自然语言处理等领域都有广泛的应用,是很多复杂算法求解的基础。比如我们前面讲到的分解机(Factorization Machines)推荐算法,还有前面讲到的受限玻尔兹曼机(RBM)原理总结,都用到了MCMC来做一些复杂运算的近似求解。下面我们就对MCMC的原理做一个总结。1. MCMC 概述从名字我们可以看出,MCMC由两个MC组成,即蒙特卡罗方法(Monte Carlo

2022-02-22 15:00:17 209

原创 Python 协程 & asyncio & 异步编程

为什么要讲?越来越多的学生都来问async异步相关问题,并且这一部分的知识点不太容易学习(异步非阻塞、asyncio)异步相关话题和框架越来越多,例如:tornado、fastapi、django 3.x asgi 、aiohttp都在异步 -> 提升性能。如何讲解?第一部分:协程。第二部分:asyncio模块进行异步编程。第三部分:实战案例。1.协程协程不是计算机提供,程序员人为创造。协程(Coroutine),也可以被称为微线程,是一种用户态内的上下文切换技术。简而言之,

2022-02-19 15:01:50 238 1

原创 Java Collection Deque

Deque(java.util.Deque)接口代表着双向队列,意思就是可以从队列的两端增加或者删除元素,Deque就是双向Queue的意思。Deque 的实现既然Deque是个接口所以初始化时就要用到其具体的实现,在 Collections API中有下面两种实现:java.util.LinkedListjava.util.ArrayDequeLinkedList类是非常标准的Deque和Queue的实现,它在内部使用链接列表来建模queue或deque。ArrayDeque类内部存储元素

2022-01-24 19:54:35 124

原创 SpringBoot .properties 配置文件里的中文属性乱码问题

问题:SpringBoot 项目中的 .properties 配置文件里面如果有中文属性,Idea 控制台输出中文会乱码解决:在 @Configuration 修饰的配置类上添加如下注解:@PropertySource(value = "classpath:/xxx.properties", encoding="UTF-8")注意将 xxx 替换成自定义的 properties 文件名。...

2022-01-08 16:51:39 259

概率论基础概念科普介绍

概率论基础概念科普介绍

2021-09-04

线性代数基础概念科普介绍

线性代数基础概念科普介绍

2021-09-04

邹博机器学习课件

邹博 机器学习升级版VII 课程讲义 PPT 共 23 课,高清

2018-11-08

Java jdk api 1.8

下载后,若出现chm文件打开但无内容显示情况,请右击文件,选择属性,并勾选“解除锁定”即可打开文件。

2018-09-02

GoogleFileSystem-Bigtable-MapReduce

Google大数据“三驾马车”Google File System(GFS)、BigTable、MapReduce 中文版文献

2018-08-12

统计学经典教材小合集

本集合中包括以下文档: 1)统计学完全教程 2)赤裸裸的统计学(查尔斯) 3)概率论与数理统计(陈希孺) 4)概率统计(Probability and Statistics) 5)女士品茶20世纪统计学怎样变革了科学 6)数学学科专题史丛书:数理统计学简史 7)统计学思维:程序员数学之概率统计 本集合旨在从统计学角度出发入门机器学习,以期对统计学有个全面的了解

2017-10-13

深入分析Java Web技术内幕

《深入分析Java Web技术内幕(修订版)》新增了淘宝在无线端的应用实践,包括:CDN 动态加速、多终端化改造、 多终端Session 统一 ,以及在大流量的情况下,如何跨越性能、网络和一个地区的电力瓶颈等内容,并提供了比较完整的解决方案。 《深入分析Java Web技术内幕(修订版)》主要围绕Java Web 相关技术从三方面全面、深入地进行了阐述。首先介绍 前端知识,即在JavaWeb 开发中涉及的一些基本知识,包括Web 请求过程、HTTP、DNS 技术和CDN 技术。其次深入介绍了Java 技术,包括I/O 技术、中文编码问题、Javac 编译原理、class 文件结构解析、ClassLoader 工作机制及JVM 的内存管理等。最后介绍了Java 服务端技术,主要包括Servlet、Session 与Cookie、Tomcat 与Jetty服务器、Spring 容器、iBatis 框架和Velocity 框架等原理介绍,并介绍了服务端的一些优化技术。 《深入分析Java Web技术内幕(修订版)》不仅介绍这些技术和框架的工作原理,而且结合示例来讲解,通过通俗易懂的文字和丰富、生动的配图,让读者充分并深入理解它们的内部工作原理,同时还结合了设计模式来介绍这些技术背后的架构思维。 作者简介 · · · · · · 许令波,毕业于合肥工业大学,获计算机硕士学位。热爱Java Web技术,关注服务端性能优化,热衷开源技术的研究和分享,曾获developerWorks最佳作者称号。2009年进入淘宝工作,目前从事模板渲染框架与MVC框架的开发与应用、Java Web的性能优化、高访问量系统静态化和商品详情系统的业务改造等工作。

2017-10-13

CC150(CareerCup)

cc150,全名cracking the coding interview - 150 Programming Questions and Solutions。经典中的经典,曾有人别的啥都不做,刷这本书三四遍,拿了Google的offer(注意是在美国,在中国就算了……)这本书的优势在于分章节,每章突出一块知识,题目精炼,答案好找;缺点呢,你写出的代码,需要深度检验,而cc150是书不是online judge,这个还是做不到。

2017-06-14

技术之瞳 阿里巴巴技术笔试心得-2016.11-p260

技术之瞳--阿里巴巴技术笔试心得

2017-03-02

《算法新解》中文pdf

1. 七年磨一剑,亚马逊中国高级研发人员重磅力作 2. 函数式算法与常规算法对照解读 3. 伪代码与多语言实现并存,充分发挥语言特性 4. 涵盖C/C++、Haskell、Python、Scheme等 5. 理论与实例结合,轻松学习算法与数据结构 6. 内含ACM竞赛趣题和传统趣题,发现算法的乐趣

2017-02-12

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除