[Leetcode] 85. Maximal Rectangle 单调栈

本文详细解析了LeetCode上的经典题目——最大矩形问题,通过使用单调栈算法,将二维矩阵中寻找包含最多1的最大矩形面积问题转化为一系列一维直方图最大矩形面积问题进行求解。

85. Maximal Rectangle(题目链接

Hard

Given a 2D binary matrix filled with 0's and 1's, find the largest rectangle containing only 1's and return its area.

Example:

Input:
[
  ["1","0","1","0","0"],
  ["1","0","1","1","1"],
  ["1","1","1","1","1"],
  ["1","0","0","1","0"]
]
Output: 6

 

方法1:单调栈

这个题可以看成是[Leetcode] 84. Largest Rectangle in Histogram 的扩展。把每一层当做底,如果某个位置为"0",则更新该位置为0,否则+1

class Solution:
    def maximalRectangle(self, matrix: List[List[str]]) -> int:
        if not matrix:
            return 0
        rlt = 0
        heights = [0] * len(matrix[0])
        for row in matrix:
            for i in range(len(row)):
                heights[i] = heights[i] + 1 if row[i] == '1' else 0
            rlt = max(rlt, self.largestRectangleArea(heights))
        
        return rlt
    
    def largestRectangleArea(self, heights: List[int]) -> int:
        if not heights:
            return 0
        rlt = 0
        stack = []
        heights.append(0)
        i = 0
        while i < len(heights):
            if not stack or heights[i] >= heights[stack[-1]]:
                stack.append(i)
                i += 1
                continue
            top = stack.pop()
            # 算间距的时候,不能用i-top, 测试 4,2,0,3,2,5,0
            rlt = max(rlt, heights[top] * (i if not stack else i - stack[-1] - 1))
        return rlt

 

# 国家医疗服务项目规范数据导入工具功能介绍 ## 工具概述 本工具是一个专门用于处理国家医疗服务项目规范数据并将其导入数据库的图形化应用程序。它支持多种Excel格式的医疗服务价格数据文件,能够自动解析、映射和导入到MySQL和Oracle数据库中,大大简化了医疗机构数据维护的工作流程。 ## 核心功能 ### 1. 数据库连接管理 - 支持Oracle数据库连接 - 可配置主机地址、端口、服务名、用户名和密码 - 支持保存连接配置,便于下次快速连接 - 提供连接测试功能,确保数据库连接正常 ### 2. 多地区数据支持 - 支持全国医疗服务价格数据导入 - 可根据不同地区的Excel格式自动适配数据映射 ### 3. Excel文件处理 - 支持读取多Sheet的Excel文件(.xls和.xlsx格式) - 自动识别不同Sheet的数据结构 - 支持"总版(含取消)"、"B类项目"、"临时新增项目"等不同类型的Sheet - 可处理复杂的数据映射关系 ### 4. 数据导入控制 - 提供"是否覆盖原来数据"选项,支持增量或全量数据更新 - 实时显示数据处理进度条 - 详细的处理结果日志输出 - 自动生成唯一主键,确保数据唯一性 ### 5. 列值映射配置 - 提供可视化列值映射配置界面 - 支持不同Sheet页的独立列映射配置 - 可设置数据起始行号,适应不同Excel格式 - 支持保存和加载映射配置,便于重复使用 ### 6. 数据表管理 - 自动创建数据库表结构(xtgl_ybylfwxm表) - 支持多种医疗服务项目字段: - 基本信息:编码、项目名称、项目内涵、除外内容、计价单位 - 价格信息:医院价格(三甲、非三甲、市级、县级、乡级) - 分类信息:财务分类代码、医保支付类别、项目类别 - 其他信息
LeetCode85 题的题目名称是: ## **Maximal Rectangle**(最大矩形) --- ### 🔹题目描述: 给定一个只包含 `0` 和 `1` 的二维二进制矩阵 `matrix`,找出只包含 `1` 的最大矩形,并返回其面积。 --- ### 🔹示例: ```text 输入: [ ["1","0","1","0","0"], ["1","0","1","1","1"], ["1","1","1","1","1"], ["1","0","0","1","0"] ] 输出: 6 ``` 解释: 最大矩形是由第二行和第三行中的 `1` 构成的,大小为 `2 x 3 = 6`。 --- ### 🔹解法思路: 这道题是 **LeetCode 84(Largest Rectangle in Histogram)** 的二维扩展。 我们可以将每一行看作是直方图的底部,并逐行构建“高度数组”,然后对每一行使用 LeetCode 84 的单调栈解法来计算当前行所能构成的最大矩形面积。 --- ### 🔹C++ 实现代码: ```cpp #include <iostream> #include <vector> #include <stack> using namespace std; // LeetCode 84 的函数:直方图中最大矩形面积 int largestRectangleArea(vector<int>& heights) { stack<int> s; int maxArea = 0; heights.push_back(0); // 添加一个0,确保最后所有元素都被弹出 for (int i = 0; i < heights.size(); ++i) { while (!s.empty() && heights[i] < heights[s.top()]) { int height = heights[s.top()]; s.pop(); int width = s.empty() ? i : i - s.top() - 1; maxArea = max(maxArea, height * width); } s.push(i); } heights.pop_back(); // 恢复原数组 return maxArea; } // LeetCode 85 主函数 int maximalRectangle(vector<vector<char>>& matrix) { if (matrix.empty() || matrix[0].empty()) return 0; int rows = matrix.size(); int cols = matrix[0].size(); vector<int> heights(cols, 0); // 每列的高度 int maxArea = 0; for (int row = 0; row < rows; ++row) { // 更新高度数组 for (int col = 0; col < cols; ++col) { if (matrix[row][col] == '1') { heights[col] += 1; } else { heights[col] = 0; } } // 使用 LeetCode 84 的方法计算当前行的最大面积 maxArea = max(maxArea, largestRectangleArea(heights)); } return maxArea; } // 主函数测试 int main() { vector<vector<char>> matrix = { {'1','0','1','0','0'}, {'1','0','1','1','1'}, {'1','1','1','1','1'}, {'1','0','0','1','0'} }; cout << "最大矩形面积是: " << maximalRectangle(matrix) << endl; return 0; } ``` --- ### 🔹代码解释: - `largestRectangleArea`:使用单调栈实现 LeetCode 84 的解法。 - `maximalRectangle`: - 遍历每一行,维护一个 `heights` 数组,表示当前行以上每列的“高度”。 - 每一行都调用一次 `largestRectangleArea` 来计算最大矩形面积。 - 时间复杂度:`O(rows * cols)`,因为每一行构建高度数组是 `O(cols)`,而单调栈也是 `O(cols)`。 --- ### 🔹总结: | 项目 | 内容 | |------|------| | 难度 | 困难 | | 算法 | 单调栈 + 动态规划 | | 时间复杂度 | O(rows × cols) | | 空间复杂度 | O(cols) | | 相关题号 | LeetCode 84, 221(最大正方形) | --- ###
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值