注意几个关键区间的范围取定
#include<iostream>
#include<cmath>#include<algorithm>
using namespace std;
#define M 100010
#define MAXN 500
#define MAXM 500
int dp[M][18];
/*
*一维RMQ ST算法
*构造RMQ数组 makermq(int n,int b[]) O(nlog(n))的算法复杂度
*dp[i][j] 表示从i到i+2^j -1中最小的一个值(从i开始持续2^j个数) ,i代表下标
*dp[i][j]=min{dp[i][j-1],dp[i+2^(j-1)][j-1]} ,分了两段,前半段是从[s,i-2^(j-1)-1],后半段是从[i+2^(j-1),i+2^j-1] 选取两段中最小的那个用min,最大的话用max
*查询RMQ rmq(int s,int v) s到v是从下标开始的,即s最小是0
*将s-v 分成两个2^k的区间
*即 k=(int)log2(s-v+1) s-v+1代表s到v的长度
*查询结果应该为 min(dp[s][k],dp[v-2^k+1][k]) 前半段是从[s,v-2^(k-1)]
*1<<j 代表2^j
*/
void makermq(int n,int b[])
{
int i,j;
for(i=0;i<n;i++) //只有一个数的时候,最小的数即为它本身
dp[i][0]=b[i];
for(j=1;(1<<j)<=n;j++)
for(i=0;i+(1<<j)-1<n;i++)//i表示从坐标开始,遍历每个数的所有情况,即从[i]开始,前面有几个数(包括b[i]本身)
dp[i][j]=min(dp[i][j-1],dp[i+(1<<(j-1))][j-1]); // i+(1<<j)-1<n,小于n是因为n代表的是这串数字的长度故下标
} // 故下标只到n-1
int rmq(int s,int v)
{
int k=(int)(log((v-s+1)*1.0)/log(2.0));
return min(dp[s][k],dp[v-(1<<k)+1][k]);//当2^k小于v-s+1)时,dp[s][k]表示前半段,dp[v-(1<<k)+1][k]表示后半段
//中间有重叠,当2^k恰好等于v-s+1时, dp[s][k],dp[v-(1<<k)+1][k]指的是同一段
//即[s,v]
}
void makeRmqIndex(int n,int b[]) //返回最小值对应的下标
{
int i,j;
for(i=0;i<n;i++)
dp[i][0]=i;
for(j=1;(1<<j)<=n;j++) //dp[i][j]由dp[i][0]推出来
for(i=0;i+(1<<j)-1<n;i++)
dp[i][j]=b[dp[i][j-1]] < b[dp[i+(1<<(j-1))][j-1]]? dp[i][j-1]:dp[i+(1<<(j-1))][j-1];
}
int rmqIndex(int s,int v,int b[])
{
int k=(int)(log((v-s+1)*1.0)/log(2.0));
return b[dp[s][k]]<b[dp[v-(1<<k)+1][k]]? dp[s][k]:dp[v-(1<<k)+1][k];
}
int main()
{
int a[]={3,4,5,7,8,9,0,3,4,5};
//返回下标
makeRmqIndex(sizeof(a)/sizeof(a[0]),a);
cout<<rmqIndex(0,9,a)<<endl;
cout<<rmqIndex(4,9,a)<<endl;
//返回最小值
makermq(sizeof(a)/sizeof(a[0]),a);
cout<<rmq(0,9)<<endl;
cout<<rmq(4,9)<<endl;
return 0;
}