一维RMQ

注意几个关键区间的范围取定


#include<iostream>  

#include<cmath>  
#include<algorithm>  
using namespace std;  
  
#define M 100010  
#define MAXN 500  
#define MAXM 500  
int dp[M][18];  
/* 
*一维RMQ ST算法 
*构造RMQ数组 makermq(int n,int b[]) O(nlog(n))的算法复杂度 
*dp[i][j] 表示从i到i+2^j -1中最小的一个值(从i开始持续2^j个数) ,i代表下标 
*dp[i][j]=min{dp[i][j-1],dp[i+2^(j-1)][j-1]} ,分了两段,前半段是从[s,i-2^(j-1)-1],后半段是从[i+2^(j-1),i+2^j-1] 选取两段中最小的那个用min,最大的话用max 
*查询RMQ rmq(int s,int v) s到v是从下标开始的,即s最小是0 
*将s-v 分成两个2^k的区间 
*即 k=(int)log2(s-v+1) s-v+1代表s到v的长度 
*查询结果应该为 min(dp[s][k],dp[v-2^k+1][k])  前半段是从[s,v-2^(k-1)] 
*1<<j 代表2^j 
*/  
  
void makermq(int n,int b[])  
{  
    int i,j;  
    for(i=0;i<n;i++)  //只有一个数的时候,最小的数即为它本身 
        dp[i][0]=b[i];  
    for(j=1;(1<<j)<=n;j++)  
        for(i=0;i+(1<<j)-1<n;i++)//i表示从坐标开始,遍历每个数的所有情况,即从[i]开始,前面有几个数(包括b[i]本身)
   dp[i][j]=min(dp[i][j-1],dp[i+(1<<(j-1))][j-1]);  // i+(1<<j)-1<n,小于n是因为n代表的是这串数字的长度故下标
}                                                            // 故下标只到n-1
int rmq(int s,int v)  
{  
    int k=(int)(log((v-s+1)*1.0)/log(2.0));  
    return min(dp[s][k],dp[v-(1<<k)+1][k]);//当2^k小于v-s+1)时,dp[s][k]表示前半段,dp[v-(1<<k)+1][k]表示后半段
                                          //中间有重叠,当2^k恰好等于v-s+1时, dp[s][k],dp[v-(1<<k)+1][k]指的是同一段 
                                          //即[s,v] 
}  
  
void makeRmqIndex(int n,int b[]) //返回最小值对应的下标  
{  
    int i,j;  
    for(i=0;i<n;i++)  
        dp[i][0]=i;  
    for(j=1;(1<<j)<=n;j++)  //dp[i][j]由dp[i][0]推出来 
        for(i=0;i+(1<<j)-1<n;i++)  
            dp[i][j]=b[dp[i][j-1]] < b[dp[i+(1<<(j-1))][j-1]]? dp[i][j-1]:dp[i+(1<<(j-1))][j-1];  
}  
int rmqIndex(int s,int v,int b[])  
{  
    int k=(int)(log((v-s+1)*1.0)/log(2.0));  
    return b[dp[s][k]]<b[dp[v-(1<<k)+1][k]]? dp[s][k]:dp[v-(1<<k)+1][k];  
}  
  
int main()  
{  
    int a[]={3,4,5,7,8,9,0,3,4,5};  
    //返回下标  
    makeRmqIndex(sizeof(a)/sizeof(a[0]),a);  
    cout<<rmqIndex(0,9,a)<<endl;  
    cout<<rmqIndex(4,9,a)<<endl;  
    //返回最小值  
    makermq(sizeof(a)/sizeof(a[0]),a);  
    cout<<rmq(0,9)<<endl;  
    cout<<rmq(4,9)<<endl;  
    return 0;  
}  
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值