不同路径1和2
题目在上面
这两个题目都是简单的动态规划问题
对不同路径最初始的问题举个例子
因为我们的机器人只能向右或者向下走一步 因此这个矩形的第一行和第一列都可以初始化为1
然后我们就可以得到动态规划的方程
f
i
,
j
=
f
i
−
1
,
j
+
f
i
,
j
−
1
f_{i,j} = f_{i - 1,j} + f_{i,j-1}
fi,j=fi−1,j+fi,j−1
是不是很熟悉? 没错就是我们的杨辉三角
不同路径2
此题就是在第一个题目的基础上加入了一个障碍物,因此我们可以继续模仿第一题的思路解题。
我们可以知道障碍物的地方不能走,因此其状态就是 0
if (grid[i][j] == 0) dp[i][j] == 0
正因如此,由于第一列和第一行只能一条路走到黑,如果中间有障碍物,那么就无法继续走
因此和第一题的初始化有差别,当遇到障碍物时直接退出循环
那么这个题的剩余部分就和第一题一模一样了
不同路径1
class Solution {
public:
int uniquePaths(int m, int n) {
int dp[m][n];
for(int i = 0; i < m; ++i) dp[i][0] = 1;
for(int i = 0; i < n; ++i) dp[0][i] = 1;
for(int i = 1; i < m; ++i)
for(int j = 1; j < n; ++j)
dp[i][j] = dp[i - 1][j] + dp[i][j - 1];
return dp[m - 1][n - 1];
}
};
不同路径2
class Solution {
public:
int uniquePathsWithObstacles(vector<vector<int>>& obstacleGrid) {
int m = obstacleGrid.size(), n = obstacleGrid[0].size();
vector<vector<int>> dp (m, vector<int>(n,0));
for(int i = 0; i < m; ++i){
if(obstacleGrid[i][0] == 1) break;
dp[i][0] = 1;
}
for(int i = 0; i < n; ++i){
if(obstacleGrid[0][i] == 1) break;
dp[0][i] = 1;
}
for(int i = 1; i < m; ++i)
for(int j = 1; j < n; ++j)
if(obstacleGrid[i][j] != 1)
dp[i][j] = dp[i - 1][j] + dp[i][j - 1];
return dp[m - 1][n - 1];
}
};
本文的题目和图片均来自LeetCode
感谢你的阅读