Given a non-empty array of integers, every element appears twice except for one. Find that single one.
Note: Your algorithm should have a linear runtime complexity. Could you implement it without using extra memory?
Example 1:
Input: [2,2,1]
Output: 1
Example 2:
Input: [4,1,2,1,2]
Output: 4
思路1
- 遍历
nums
中每一个元素 - 查找哈希表中是否出现过该元素
- 如果没出现过,插入哈希表;否则移除对应的元素
- 最后剩下来的一个就是最后结果
时间复杂度为 O ( N ) O( N ) O(N) 空间复杂度为 O ( N ) O(N) O(N)
代码1
class Solution {
public:
int singleNumber(vector<int>& nums) {
unordered_set<int> s;
for(int i = 0; i < nums.size(); i++)
{
if(s.count(nums[i]) <= 0)
s.insert(nums[i]);
else
s.erase(nums[i]);
}
return *(s.begin());
}
};
思路2
先排序,每次两个一次进行遍历,如果当前元素和后面一个元素相同,则继续;如果不同则即为所求(因为两个相等的必连在一起)。需要注意如果是最后一个元素的情况,此时取最后一个元素后面的一个会越界(因此约束遍历范围 s i z e − 1 size-1 size−1 ),遍历完仍然没有返回的这个元素就是向量最后一个元素。
总体时间复杂度为 O ( N l o n g N ) O(NlongN) O(NlongN),空间复杂度为 O ( 1 ) O( 1 ) O(1)
代码2
class Solution {
public:
int singleNumber(vector<int>& nums) {
sort(nums.begin(), nums.end());
for(int i = 0; i < nums.size()-1; i += 2)
{
if(nums[i] != nums[i+1])
return nums[i];
}
return nums[nums.size()-1];
}
};
思路3 异或
逐个元素异或剩下来的就是所求 A^B^A=B
因为异或运算是同时满足交换律和结合律的,同一个出现两次的数据会被清除,仅仅只会剩下最后一个出现一次的数据
遍历一遍时间复杂度为 O ( N ) O( N ) O(N), 空间复杂度为 O ( 1 ) O(1) O(1)
代码3
class Solution {
public:
int singleNumber(vector<int>& nums) {
for(int i = 1; i < nums.size(); i++)
nums[i] ^= nums[i-1];
return nums[nums.size()-1];
}
};
class Solution {
public:
int singleNumber(vector<int>& nums) {
return std::accumulate(nums.begin(), nums.end(), 0, [](int a, int b) {return a ^ b;});
}
};
final code
class Solution {
public:
int singleNumber(vector<int>& nums) {
int res = 0;
for(const auto& num : nums)
res ^= num;
return res;
}
};
位运算:
- 如果我们对
0
和二进制位做XOR
运算,得到的仍然是这个二进制位- a ⊕ 0 = a a \oplus 0 = a a⊕0=a
- 如果我们对相同的二进制位做
XOR
运算,返回的结果是0
- a ⊕ a = 0 a \oplus a = 0 a⊕a=0
XOR
满足交换律和结合律- a ⊕ b ⊕ a = ( a ⊕ a ) ⊕ = 0 ⊕ b = b a \oplus b \oplus a = (a \oplus a) \oplus = 0\oplus b = b a⊕b⊕a=(a⊕a)⊕=0⊕b=b
直接将所有的数进行 XOR
操作,得到唯一的一个数字。