【问题描述】
Given a triangle, find the minimum path sum from top to bottom. Each step you may move to adjacent numbers on the row below.
For example, given the following triangle
[
[2],
[3,4],
[6,5,7],
[4,1,8,3]
]
The minimum path sum from top to bottom is 11 (i.e., 2 + 3 + 5 + 1 = 11).
Note:
Bonus point if you are able to do this using only O(n) extra space, where n is the total number of rows in the triangle.
【问题分析】
从下至上 DP即可
【算法设计】
class Solution {
public:
int minimumTotal(vector<vector<int>>& triangle) {
int size = triangle.size();
vector<vector<int>> DP(size);
for(int i=0; i<size; i++)
{
DP[i].resize(triangle[i].size());
}
DP[triangle.size()-1] = triangle[triangle.size()-1];
for(int i=triangle.size()-2; i>=0; i--)
{
for(int j=0; j<triangle[i].size(); j++)
{
DP[i][j] = triangle[i][j] + min(DP[i+1][j], DP[i+1][j+1]);
}
}
return DP[0][0];
}
};
【算法分析】
实际上可以不必使用二维向量来存储,使用一维向量逐层覆盖即可。
class Solution {
public:
int minimumTotal(vector<vector<int>>& triangle) {
vector<int> mini = triangle[triangle.size()-1]; //初始化最后一行
for(int i=triangle.size()-2; i>=0; i--)
{
for(int j=0; j<triangle[i].size(); j++)
{
mini[j] = triangle[i][j] + min(mini[j] , mini[j+1]);
}
}
return mini[0];
}
};