【问题描述】: 设有 n n n个活动的集合 E = 1 , 2 , ⋯ , n E = {1, 2, ⋯, n} E=1,2,⋯,n,其中每个活动都要求使用同一资源(如演讲会场) ,而在同一时间内只有一个活动能使用这一资源。每个活动 i i i 都有一个要求使用该资源的起始时间 s i s_i si 和一个结束时间 f i f_i fi , 且 s i < f i s_i < f_i si<fi 。如果选择了活动 , 则它在半开时间区间 [
贪心法 活动安排问题
最新推荐文章于 2024-09-29 23:33:11 发布
活动安排问题要求在相容的活动中选择最大子集。贪心策略是选取结束时间最早的活动,确保剩余时间最大化。首先按结束时间排序,然后检查每个活动是否与其他活动相容,选择相容的最早结束活动。算法时间复杂度为$O(nlogn)$。通过实现,验证了选择{1, 4, 8, 11}这4个活动的正确性。"
112329242,10545246,LaTeX 撰文艺术:优雅使用公式与排版技巧,"['LaTeX技术', '排版设计', '数学公式处理', '代码管理', '学术写作']
摘要由CSDN通过智能技术生成