K-D树

K-D树,即K-Dimensional Tree,是一种高维索引树型数据结构。常用于大规模高维数据空间的最邻近或者K邻

近查找,例如图像检索中高维图像特征向量的K邻近匹配,对KNN算法的优化等。

 

Contents

 

   1. K-D树的基本原理

   2. K-D树的改进(BBF算法)

   3. K-D树的C++实现

   4. K-D树的开源框架介绍

 

 

1. K-D树的基本原理

 

   K-D树实际上是一棵高维二叉搜索树,与普通二叉搜索树不同的是,树中存储的是一些K维数据。先回忆一下二

   叉搜索树(BST),它是一棵具有如下性质的树

 

   (1)若它的左子树不为空,那么左子树上所有节点的值均小于它的根节点的值。

   (2)若它的右子树不为空。那么右子树上所有节点的值均大于它的根节点的值。

   (3)它的左右子树也分别是一棵二叉搜索树。

 

   二叉搜索树在建树时,按照上述规则分别插入即可。而在搜索时,从根节点开始往下查找。可以看出二叉搜索

   树的建树平均时间复杂度为,最坏时间复杂度为,查找的平均时间复杂度为

   最坏时间复杂度为,由于二叉搜索树不是平衡的,可能退化为一条链,这种情况就是最坏情况了。

 

   普通的二叉搜索树是一维的,当推广到K维后,就是我们的K-D树了。在K-D树中跟二叉搜索树差不多,也是将

   一个K维的数据与根节点进行比较,然后划分的,这里的比较不是整体的比较,而是选择其中一个维度来进行比

   较。那么在K-D树中我们需要解决两个重要的问题

 

   (1)每一次划分时,应该选择哪个维度?

   (2)在某个维度上划分时,如何保证左右子树节点个数尽量相等?

 

   首先来看问题(1)每次划分时,应该选择哪个维度 ?

 

   最简单的做法就是一个维度一个维度轮流着来,但是仔细想想,这种方法不能很好地解决问题。假设有这样一

   种情况:我们需要切一个豆腐条,长度要远远大于宽度,要想把它切成尽量相同的小块,显然是先按照长度来

   切,这样更合理,如果宽度比较窄,那么这种效果更明显。所以在K-D树中,每次选取属性跨度最大的那个来

   进行划分,而衡量这个跨度的标准是什么? 无论是从数学上还是人的直观感受方面来说,如果某个属性的跨度

   越大,也就是说越分散,那么这组数据的方差就越大,所以在K-D树进行划分时,可以每次选择方差最大的属性

   来划分数据到左右子树。

 

   问题(1)已解决,现在再来看问题(2),在某个维度上划分时,如何保证左右子树节点个数尽量相等?

 

   当我们选择好划分的属性时,还要根据某个值来进行左右子树划分,而这个值就是一个划分轴,回忆一下,在快

   速排序算法中,也有一个划分轴pivot。在K-D树的划分中,这个轴的选取很关键,要保证划分后的左右子树尽

   量平衡,那么很显然选取这个属性的值对应数组的中位数作为pivot,就能保证这一点了。

 

   这样就解决了K-D树中最重要的两个问题。接下来看K-D树是如何进行查找的。

 

   假设现在已经构造好了一棵K-D树,最邻近查找的算法描述如下

 

   (1)将查询数据Q从根节点开始,按照Q与各个节点的比较结果向下遍历,直到到达叶子节点为止。到达叶子节

       点时,计算Q与叶子节点上保存的所有数据之间的距离,记录最小距离对应的数据点,假设当前最邻近点为

       p_cur,最小距离记为d_cur。

   (2)进行回溯操作,该操作的目的是找离Q更近的数据点,即在未访问过的分支里,是否还有离Q更近的点,它

       们的距离小于d_cur。

 

   以上就是K-D树的基本原理。

 

 

2. K-D树的改进(BBF算法)

 

   上述中的K-D树存在缺点,当维数比较大的时候,建树后的分支自然会增多,进而回溯的次数增加,算法效率会

   随之降低。在图像检索中,特征往往是高维的,很有必要对K-D树算法进行改进,这就是即将要介绍的BBF算法。

 

   BBF算法我就不详细说了,具体可以参考如下两篇文章

 

  (1)Kd-Tree算法原理和开源实现代码

   (2)从K近邻算法、距离度量谈到KD树、SIFT+BBF算法

 

 

3. K-D树的C++实现

 

   以HDU4347为例,给出K-D树的C++的简易代码。 题目:The Closest M Points

 

   代码:

#include <iostream>
#include <string.h>
#include <algorithm>
#include <stdio.h>
#include <math.h>
#include <queue>
 
using namespace std;
 
#define N 50005
 
#define lson rt << 1
#define rson rt << 1 | 1
#define Pair pair<double, Node>
#define Sqrt2(x) (x) * (x)
 
int n, k, idx;
 
struct Node
{
    int feature[5];     //定义属性数组
    bool operator < (const Node &u) const
    {
        return feature[idx] < u.feature[idx];
    }
}_data[N];   //_data[]数组代表输入的数据
 
priority_queue<Pair> Q;     //队列Q用于存放离p最近的m个数据
 
class KDTree{
 
    public:
        void Build(int, int, int, int);     //建树
        void Query(Node, int, int, int);    //查询
 
    private:
        Node data[4 * N];    //data[]数组代表K-D树的所有节点数据
        int flag[4 * N];      //用于标记某个节点是否存在,1表示存在,-1表示不存在
}kd;
 
//建树步骤,参数dept代表树的深度
void KDTree::Build(int l, int r, int rt, int dept)
{
    if(l > r) return;
    flag[rt] = 1;                   //表示编号为rt的节点存在
    flag[lson] = flag[rson] = -1;   //当前节点的孩子暂时标记不存在
    idx = dept % k;                 //按照编号为idx的属性进行划分
    int mid = (l + r) >> 1;
    nth_element(_data + l, _data + mid, _data + r + 1);   //nth_element()为STL中的函数
    data[rt] = _data[mid];
    Build(l, mid - 1, lson, dept + 1);  //递归左子树
    Build(mid + 1, r, rson, dept + 1);  //递归右子树
}
 
//查询函数,寻找离p最近的m个特征属性
void KDTree::Query(Node p, int m, int rt, int dept)
{
    if(flag[rt] == -1) return;   //不存在的节点不遍历
    Pair cur(0, data[rt]);       //获取当前节点的数据和到p的距离
    for(int i = 0; i < k; i++)
        cur.first += Sqrt2(cur.second.feature[i] - p.feature[i]);
    int dim = dept % k;          //跟建树一样,这样能保证相同节点的dim值不变
    bool fg = 0;                 //用于标记是否需要遍历右子树
    int x = lson;
    int y = rson;
    if(p.feature[dim] >= data[rt].feature[dim]) //数据p的第dim个特征值大于等于当前的数据,则需要进入右子树
        swap(x, y);
    if(~flag[x]) Query(p, m, x, dept + 1);      //如果节点x存在,则进入子树继续遍历
 
    //以下是回溯过程,维护一个优先队列
    if(Q.size() < m)   //如果队列没有满,则继续放入
    {
        Q.push(cur);
        fg = 1;
    }
    else
    {
        if(cur.first < Q.top().first)  //如果找到更小的距离,则用于替换队列Q中最大的距离的数据
        {
            Q.pop();
            Q.push(cur);
        }
        if(Sqrt2(p.feature[dim] - data[rt].feature[dim]) < Q.top().first)
        {
            fg = 1;
        }
    }
    if(~flag[y] && fg) 
        Query(p, m, y, dept + 1);
}
 
//输出结果
void Print(Node data)
{
    for(int i = 0; i < k; i++)
        printf("%d%c", data.feature[i], i == k - 1 ? '\n' : ' ');
}
 
int main()
{
    while(scanf("%d%d", &n, &k)!=EOF)
    {
        for(int i = 0; i < n; i++)
            for(int j = 0; j < k; j++)
                scanf("%d", &_data[i].feature[j]);
        kd.Build(0, n - 1, 1, 0);
        int t, m;
        scanf("%d", &t);
        while(t--)
        {
            Node p;
            for(int i = 0; i < k; i++)
                scanf("%d", &p.feature[i]);
            scanf("%d", &m);
            while(!Q.empty()) Q.pop();   //事先需要清空优先队列
            kd.Query(p, m, 1, 0);
            printf("the closest %d points are:\n", m);
            Node tmp[25];
            for(int i = 0; !Q.empty(); i++)
            {
                tmp[i] = Q.top().second;
                Q.pop();
            }
            for(int i = m - 1; i >= 0; i--)
                Print(tmp[i]);
        }
    }
    return 0;
}

 

4. K-D树的开源框架介绍

 

   K-D树的一个比较好的C++框架可以戳这里。下载后,可以参考里面的examples文件夹中的代码学习使用。

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值