【算法详解】力扣162.寻找峰值

本文介绍了如何使用二分查找算法在给定的整数数组中找到峰值元素,时间复杂度达到O(logn),并通过实例展示了如何在满足特定边界条件下应用这种高效方法。
摘要由CSDN通过智能技术生成


一、题目描述

力扣链接:力扣162.寻找峰值

峰值元素是指其值严格大于左右相邻值的元素。

给你一个整数数组 nums,找到峰值元素并返回其索引。数组可能包含多个峰值,在这种情况下,返回 任何一个峰值 所在位置即可。

你可以假设 nums[-1] = nums[n] = -∞

你必须实现时间复杂度为 O(log n) 的算法来解决此问题。

二、思路分析

最简单的方法,直接使用std::max_element()寻找最大值,最大值一定是一个峰值。

class Solution {
public:
    int findPeakElement(vector<int>& nums) {
        return max_element(nums.begin(), nums.end()) - nums.begin();
    }
};

该方法是时间复杂度为O(N),题目要求O(logN),查找算法容易想到的是二分查找,该题也可以使用二分查找方法来求解。

二分查找的核心是当中间值满足条件时,就可以舍弃另一半,从而缩小范围。

题目中说可以假设 nums[-1] = nums[n] = -∞ 。那么说明首个元素nums[0]和最后一个元素nums[n-1]也可以是峰值。

那么对于二分查找的mid

  • 大于右边的值,那么左边一定有峰值;
  • 在这里插入图片描述
  • 反之,则右边一定有峰值
  • 在这里插入图片描述

因此可以写出以下代码:

class Solution {
public:
    int findPeakElement(vector<int>& nums) {
        int n = nums.size();
        int left = 0, right = n - 1;

        while (left < right) {
            int mid = (left + right) >> 1; // 右移一位,相当于除以2
            if (nums[mid] > nums[mid + 1]) {
                right = mid;
            }
            else {
                left = mid + 1;
            }
        }
        return left;
    }
};

求解完毕。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值