数据结构与算法分析(Java语言描述)(24)—— 并查集的路径压缩

这里写图片描述

这里写图片描述

package com.dataStructure.union_find;

// 我们的第五版Union-Find
public class UnionFind5 {

    // rank[i]表示以i为根的集合所表示的树的层数
    // 在后续的代码中, 我们并不会维护rank的语意, 也就是rank的值在路径压缩的过程中, 有可能不在是树的层数值
    // 这也是我们的rank不叫height或者depth的原因, 他只是作为比较的一个标准
    private int[] rank;
    private int[] parent; // parent[i]表示第i个元素所指向的父节点
    private int count;    // 数据个数

    // 构造函数
    public UnionFind5(int count){
        rank = new int[count];
        parent = new int[count];
        this.count = count;
        // 初始化, 每一个parent[i]指向自己, 表示每一个元素自己自成一个集合
        for( int i = 0 ; i < count ; i ++ ){
            parent[i] = i;
            rank[i] = 1;
        }
    }

    // 查找过程, 查找元素p所对应的集合编号
    // O(h)复杂度, h为树的高度
    private int find(int p){
        assert( p >= 0 && p < count );

        // path compression 1
        while( p != parent[p] ){
            parent[p] = parent[parent[p]];
            p = parent[p];
        }
        return p;

        // path compression 2, 递归算法
//            if( p != parent[p] )
//                parent[p] = find( parent[p] );
//            return parent[p];
    }

    // 查看元素p和元素q是否所属一个集合
    // O(h)复杂度, h为树的高度
    public boolean isConnected( int p , int q ){
        return find(p) == find(q);
    }

    // 合并元素p和元素q所属的集合
    // O(h)复杂度, h为树的高度
    public void unionElements(int p, int q){

        int pRoot = find(p);
        int qRoot = find(q);

        if( pRoot == qRoot )
            return;

        // 根据两个元素所在树的元素个数不同判断合并方向
        // 将元素个数少的集合合并到元素个数多的集合上
        if( rank[pRoot] < rank[qRoot] ){
            parent[pRoot] = qRoot;
        }
        else if( rank[qRoot] < rank[pRoot]){
            parent[qRoot] = pRoot;
        }
        else{ // rank[pRoot] == rank[qRoot]
            parent[pRoot] = qRoot;
            rank[qRoot] += 1;   // 此时, 我维护rank的值
        }
    }
}

在路径压缩的过程中,不需要继续维护 rank 了嘛?

事实上,这正是我们将这个变量叫做rank而不是叫诸如depth或者height的原因。

因为这个rank只是我们做的一个标志当前节点排名的一个数字,当我们引入了路径压缩以后,维护这个深度的真实值相对困难一些。

而且实践告诉我们,我们其实不需要真正维持这个值是真实的深度值,我们依然可以以这个rank值作为后续union过程的参考。

因为根据我们的路径压缩的过程,rank高的节点虽然被抬了上来,但是整体上,我们的并查集从任意一个叶子节点出发向根节点前进,依然是一个rank逐渐增高的过程。也就是说,这个rank值在经过路径压缩以后,虽然不是真正的深度值,但仍然可以胜任,作为union时的参考。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值