求和最接近整个序列和的一半的子序列,是个标准的子序列问题,不过不知道O(N^2)是不是最优的

偶然间看到大华为的8分钟面试题:上网找一些相似的办法,总结了一下(一脸懵逼,真的有人8分钟能写出来233)

有两个数组a,b,大小都为n,数组元素的值任意,无序;
要求:通过交换a,b中的元素,使数组a元素的和与数组b元素的和之间的差最小

public static void main(String[] args) {


method(5);
}


/**
* 有两个数组a,b,大小都为n,数组元素的值任意,无序;要求:通过交换a,b中的元素,使数组a元素的和与数组b元素的和之间的差最小
* 思路
* 1.算a b 之间的差值 differ
* 2. 找出 a b 数组中差值最接近differ/2 的元素
* 3. 交换元素

* 在步骤2中,为什么是最接近differ/2 的元素,而不是differ
* 因为: d' = sum(a) - a[i] + b[j] - (sum(b) - b[j] - a[i])
* = sum(a) - sum(b) -2(a[i] - b[j])
* = differ - 2(a[i] - b[j])
* 要想两数组的差值最小,那么d' 就得最接近0(等于0最好了),那么differ 就与a[i]-b[j]存在2倍的关系。
*  
*  @param n  数组长度
*  
*/
public static void method(int n) {
int[] a = new int[n];
int[] b = new int[n];
// 给数组生成数据 随机的
for (int i = 0; i < n; i++) {
a[i] = (int) (Math.random() * 10);
b[i] = (int) (Math.random() * 10);
}


System.out.print("数组a: ");
for (int i = 0; i < n; i++) {
System.out.print(a[i] + "   ");
}
System.out.println();
System.out.print("数组b: ");
for (int i = 0; i < n; i++) {
System.out.print(b[i] + "   ");
}
// 求两个数组的差值
int differ = 0;
for (int i = 0; i < n; i++) {
differ += a[i] - b[i];
}
System.out.println();
System.out.println("\n数组a 与数组b 的差值 : " + differ);
if (differ == 0) { // 没有差值 两数组相等,结束!
System.out.println("数组a 和数组b 相等, 没有差值!");
} else { // 在数组a 和b 中找出两个数 让他们的差最接近 difference/2
int tmp = 0; // a[i] 与 b[j] 的差值
double zjj = 1000; // differ/2 与tmp 的差值
int exchangea = -1; // 数组a的下标
int exchangeb = -1; // 数组b的下标
boolean finish = false; // 如果交换后差值等于difference/2 退出循环
for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++) {
tmp = a[i] - b[j];
if (tmp == differ / 2) {
exchangea = i;
exchangeb = j;
finish = true;
break;
} else { // 不相等 找出差值最接近differ/2 的两个数
double aa = differ / 2 - tmp;
if (Math.abs(aa) < Math.abs(zjj)) {
zjj = aa;
exchangea = i;
exchangeb = j;
}
}
}
if (finish) {
break;
}
}


if (exchangea != -1 && exchangeb != -1) {
System.out.println("交换 a[" + exchangea + "]  " + a[exchangea]
+ " 和 b[" + exchangeb + "]  " + b[exchangeb]);
}
// 不利用中间变量swap的障眼法,最好还是用吧,提升可读性
a[exchangea] = a[exchangea] + b[exchangeb];
b[exchangeb] = a[exchangea] - b[exchangeb];
a[exchangea] = a[exchangea] - b[exchangeb];


// 交换后的差值
differ = 0;
for (int i = 0; i < n; i++) {
differ += a[i] - b[i];
}
System.out.println("交换后的差值 : " + differ);
}


//算法都是前人造的轮子,路还是挺长的....只需要每天进步一点点

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值