leetcode周赛的一题,这里可以对比出使用邻接表模拟数组以及使用vector容器的时间复杂度对比。
回到问题本身,是一体典型的树形dp问题,遍历每一个节点,返回和每一个子节点所构成的最长路径,而答案是某个节点(如果有),其最长的两个节点构成的路径之和。
以下为解答给出的答案:
class Solution {
public:
int longestPath(vector<int> &parent, string &s) {
int n = parent.size();
vector<vector<int>> g(n);
// 用二维数组记录每一个父子节点关系
for (int i = 1; i < n; ++i)
g[parent[i]].push_back(i);
int ans = 0;
// function 模板和 lambda表达式结合 [&]表示按引用传递上下文的值
function<int(int)> dfs = [&](int x) -> int {
int maxLen = 0;
for (int y : g[x]) {
int len = dfs(y) + 1;
if (s[y] != s[x]) {
ans = max(ans, maxLen + len);
maxLen = max(maxLen, len);
}
}
return maxLen;
};
dfs(0);
return ans + 1;
}
};
执行耗时:
如果使用y总的单链表来进行保存父子关系:
const int N = 100010;
class Solution {
public:
int h[N], e[N], ne[N], idx, res = 0;
string s;
int dfs(int u) {
int maxLen = 0;
for (int i = h[u]; i != -1; i = ne[i]) {
int j = e[i];
int len = dfs(j) + 1;
if (s[u] != s[j]) {
res = max(res, len + maxLen);
maxLen = max(maxLen, len);
}
}
return maxLen;
}
int longestPath(vector<int>& parent, string _s) {
s = _s;
memset(h, -1, sizeof h);
int head;
// 用单链表保存关系,并且记录出头节点
for (int i = 0; i < parent.size() ;i++) {
if (parent[i] == -1) head = i;
else {
e[idx] = i, ne[idx] = h[parent[i]], h[parent[i]] = idx++;
}
}
int find = dfs(head); // 这句话的作用就是去执行以下循环而已,find表示根节点以下的最长路径,但不是答案,答案是可以在两个子节点中最长路劲相加的值
return res + 1;
}
};