December 28, 2015 1:32 PM
归并排序是建立在归并操作上的一种有效的排序算法。该算法是采用分治法(Divide and Conquer)的一个非常典型的应用。
归并排序是利用递归和分而治之的技术将数据序列划分成为越来越小的半子表,再对半子表排序,最后再用递归步骤将排好序的半子表合并成为越来越大的有序序列,归并排序包括两个步骤,分别为:
- 1)划分子表
- 2)合并半子表
归并算法用示意图表示如下:
#MergeSort.py
#王渊
#2015.12.23
#Email:wyxidian@gmail.com
from pylab import *
def MSort(dataA, dataB): #子表合并排序
newData = []
lengthA = dataA.__len__()
lengthB = dataB.__len__()
while(lengthA>0 and lengthB>0): #两个子表均非空,依次取出第一个元素作比较
if(dataA[0]<dataB[0]): #取出较小的元素插入新表
newData.append(dataA[0])
dataA = dataA[1:lengthA]
else:
newData.append(dataB[0])
dataB = dataB[1:lengthB]
lengthA = dataA.__len__()
lengthB = dataB.__len__()
if(lengthA>0): #将剩余非空表中元素插入新表中
newData = newData+dataA
else:
newData = newData+dataB
return newData
def MergeSort(data):
length = data.__len__()
flag = mod(length,4)
step = 2 #每次按照2的整次幂将序列两两合并排序
while step<length:
for i in range(length//2):
data[step*i:step*i+step] = MSort(data[step*i:step*i+step//2], data[step*i+step//2:step*i+step])
if(mod((length//step),2)==1):
data[step*(i+1):length] = MSort(data[step*(i+1):step*(i+1)+step//2], data[step*(i+1)+step//2:length])
step = step*2
data = MSort(data[0:step//2], data[step//2:length])
return data
data = [48,1,16,62,73,88,24,59,99,0,35]
print("The original data is : ", data)
data = MergeSort(data)
print("The result of sorted data is : ", data)
运行结果:
The original data is : [48 1 16 62 73 88 24 59 99 0 35]
The result of sorted data is : [ 0 1 16 24 35 48 59 62 73 88 99]