给定一个二叉搜索树的根节点 root 和一个值 key,删除二叉搜索树中的 key 对应的节点,并保证二叉搜索树的性质不变。返回二叉搜索树(有可能被更新)的根节点的引用。
一般来说,删除节点可分为两个步骤:
1.首先找到需要删除的节点;
2.如果找到了,删除它。
进阶: 要求算法时间复杂度为 O(h),h 为树的高度。
题解
二叉搜索树的三个特性:
- 二叉搜索树的中序遍历的序列是递增排序的序列。中序遍历的遍历次序:Left -> Node -> Right。
- Successor 代表的是中序遍历序列的下一个节点。即比当前节点大的最小节点,简称后继节点。 先取当前节点的右节点,然后一直取该节点的左节点,直到左节点为空,则最后指向的节点为后继节点。
- Predecessor 代表的是中序遍历序列的前一个节点。即比当前节点小的最大节点,简称前驱节点。先取当前节点的左节点,然后取该节点的右节点,直到右节点为空,则最后指向的节点为前驱节点。
题解(递归):
这里有三种可能的情况:
1.要删除的节点为叶子节点,可以直接删除。
2.要删除的节点不是叶子节点且拥有右节点,则该节点可以由该节点的后继节点进行替代,该后继节点位于右子树中较低的位置。然后可以从后继节点的位置递归向下操作以删除后继节点。
3. 要删除的节点不是叶子节点,且没有右节点但是有左节点。这意味着它的后继节点在它的上面,但是我们并不想返回。我们可以使用它的前驱节点进行替代,然后再递归的向下删除前驱节点。
算法(用前驱或者后继结点代替被删除结点)
- 如果 key > root.val,说明要删除的节点在右子树,root.right = deleteNode(root.right, key)。
- 如果 key < root.val,说明要删除的节点在左子树,root.left = deleteNode(root.left, key)
- 如果 key == root.val,则该节点就是我们要删除的节点,则:
如果该节点是叶子节点,则直接删除它:root = null。
如果该节点不是叶子节点且有右节点,则用它的后继节点的值替代 root.val = successor.val,然后删除后继节点。
如果该节点不是叶子节点且只有左节点,则用它的前驱节点的值替代 root.val = predecessor.val,然后删除前驱节点。 - 返回 root。
1.找到待删除节点
- 如果 key > root.val,说明要删除的节点在右子树,root.right = deleteNode(root.right, key)
- 如果 key < root.val,说明要删除的节点在左子树,root.left = deleteNode(root.left, key)
- 如果 key == root.val,则该节点就是我们要删除的节点
- 如果找不到该节点(越过了叶节点),直接返回
2.根据找到节点的位置选择删除逻辑
- 如果该节点是叶子节点,则直接删除它:root = null。
- 如果该节点不是叶子节点且有右节点,则用它的后继节点的值替代 root.val = successor.val。然后递归向下删除后继节点,root.right=deleteNode(root.right,root.val)。
- 如果该节点不是叶子节点且只有左节点,则用它的前驱节点的值替代 root.val = predecessor.val,然后递归向下删除前驱节点。
3.返回 root。
class Solution {
public TreeNode deleteNode(TreeNode root, int key) {
//边界
if(root==null) return null;
if(root.val==key){
//为叶节点
if(root.left==null&&root.right==null) return null;
//右子树不为空
if(root.right!=null){
//用它的后继节点的值替代 root.val = successor.val,然后删除后继节点。
root.val=successor(root);
//在右子树中递归向下删除
root.right=deleteNode(root.right,root.val);
}else{//如果该节点不是叶子节点且只有左节点,则用它的前驱节点的值替代 root.val = predecessor.val,然后删除前驱节点。
root.val=predecessor(root);
root.left=deleteNode(root.left,root.val);
}
}else if(root.val<key){
root.right=deleteNode(root.right,key);
}else{
root.left=deleteNode(root.left,key);
}
return root;
}
public int successor(TreeNode root){
//找到后继节点,为右子树的最左节点/右子树根节点
TreeNode node=root.right;
while(node.left!=null){
node=node.left;
}
//最后node会停留在后继节点的位置
return node.val;
}
public int predecessor(TreeNode root){
//找到前驱节点,为左子树的最右节点/左子树根节点
TreeNode node=root.left;
while(node.right!=null){
node=node.right;
}
return node.val;
}
}