题解
法一 dfs
class Solution {
private int res = 0;
public int findTargetSumWays(int[] nums, int target) {
if(nums.length==0) return 0;
dfs(nums,0,target,0);
return res;
}
private void dfs(int[] nums,int index,int target, int val){
if(index==nums.length){
if(val==target){
res++;
}
return;
}
dfs(nums,index+1,target,val+nums[index]);
dfs(nums,index+1,target,val-nums[index]);
}
}
法二 动态规划
参考代码随想录
Q:为什么要将背包容量转化成(target + sum) / 2,动态转移方程为dp[j] += dp[j - nums[i]],
而不是容量为2*sum+1,转移方程为 dp[i][j]=dp[i-1][j+nums[i]]+dp[i-1][j-nums[i]]?
答:后者的转移方程不会计算…
class Solution {
public int findTargetSumWays(int[] nums, int target) {
int sum = 0;
for (int i = 0; i < nums.length; i++) sum += nums[i];
if ((target + sum) % 2 != 0) return 0;
int size = (target + sum) / 2;
if(size < 0) size = -size;
int[] dp = new int[size + 1];
dp[0] = 1;
for (int i = 0; i < nums.length; i++) {
for (int j = size; j >= nums[i]; j--) {
dp[j] += dp[j - nums[i]];
}
}
return dp[size];
}
}
错误写法
//背包问题 加数等于总价值加,减数等于总价值减,本题求得是背包总价值刚好等于target的表达式的数目
//1.定义 dp[i][j] 取前i个数,经运算后值等于j的表达式的数目 dp[][] = new int[len][2*sum+1] 为了不使下标取到负数,dp中第二未的值取0到2*sum 偏移量+sum
//2.转移方程 dp[i][j]=dp[i-1][j+nums[i]]+dp[i-1][j-nums[i]]
//3.遍历顺序 从上到下 从左往右 ???????
//4.返回值 dp[len][target]
class Solution {
public int findTargetSumWays(int[] nums, int target) {
int len=nums.length;
int sum=0;
int[][] dp = new int[len][2*sum+1];
for(int i=0;i<len;i++){
dp[i][0]=1;
sum+=nums[i];
}
for(int i=1;i<len;i++){
for(int j=0;j<=2*sum;j++){
if(j>=nums[i]){
dp[i][j]=dp[i-1][j+nums[i]]+dp[i-1][j-nums[i]];
}
}
}
return dp[len][target];
}
}