给你二叉搜索树的根节点 root ,同时给定最小边界low 和最大边界 high。通过修剪二叉搜索树,使得所有节点的值在[low, high]中。修剪树 不应该 改变保留在树中的元素的相对结构 (即,如果没有被移除,原有的父代子代关系都应当保留)。 可以证明,存在 唯一的答案 。
所以结果应当返回修剪好的二叉搜索树的新的根节点。注意,根节点可能会根据给定的边界发生改变。
题解
1.前序遍历二叉搜索树,找到不满足条件的点,并修剪掉
为什么是前序不是后序或者中序? 因为如果root不满足条件则root.right或者left可以一并删除,所以选择前序遍历
- root<low,root和root的左子树都必小于low,都被去掉,return trimBST(root.right,low,high),即修剪后的右子树
- root>high,root和root的右子树都必大于high被去掉。返回trimBST(root.left,low,high),即修剪后的左子树
- root的值介于low high之间,进入下一层,继续遍历并修剪左子树和右子树,并用root.left和right接住修剪后的左右子树
2. 边界条件:越过叶节点,返回null
3.返回值:返回root
class Solution {
public TreeNode trimBST(TreeNode root, int low, int high) {
if(root==null) return null;
//本层操作
//root<low,root和root的左子树都被去掉,返回trimBST(root.right,low,high)
if(root.val<low) return trimBST(root.right,low,high);
if(root.val>high) return trimBST(root.left,low,high);
//root的值介于low high之间,进入下一层,继续修剪左子树和右子树
root.left=trimBST(root.left,low,high);
root.right=trimBST(root.right,low,high);
return root;
}
}