敌兵布阵
http://acm.hdu.edu.cn/showproblem.php?pid=1166
Problem Description
C国的死对头A国这段时间正在进行军事演习,所以C国间谍头子Derek和他手下Tidy又开始忙乎了。A国在海岸线沿直线布置了N个工兵营地,Derek和Tidy的任务就是要监视这些工兵营地的活动情况。由于采取了某种先进的监测手段,所以每个工兵营地的人数C国都掌握的一清二楚,每个工兵营地的人数都有可能发生变动,可能增加或减少若干人手,但这些都逃不过C国的监视。
中央情报局要研究敌人究竟演习什么战术,所以Tidy要随时向Derek汇报某一段连续的工兵营地一共有多少人,例如Derek问:“Tidy,马上汇报第3个营地到第10个营地共有多少人!”Tidy就要马上开始计算这一段的总人数并汇报。但敌兵营地的人数经常变动,而Derek每次询问的段都不一样,所以Tidy不得不每次都一个一个营地的去数,很快就精疲力尽了,Derek对Tidy的计算速度越来越不满:"你个死肥仔,算得这么慢,我炒你鱿鱼!”Tidy想:“你自己来算算看,这可真是一项累人的工作!我恨不得你炒我鱿鱼呢!”无奈之下,Tidy只好打电话向计算机专家Windbreaker求救,Windbreaker说:“死肥仔,叫你平时做多点acm题和看多点算法书,现在尝到苦果了吧!”Tidy说:"我知错了。。。"但Windbreaker已经挂掉电话了。Tidy很苦恼,这么算他真的会崩溃的,聪明的读者,你能写个程序帮他完成这项工作吗?不过如果你的程序效率不够高的话,Tidy还是会受到Derek的责骂的.
Input
第一行一个整数T,表示有T组数据。
每组数据第一行一个正整数N(N<=50000),表示敌人有N个工兵营地,接下来有N个正整数,第i个正整数ai代表第i个工兵营地里开始时有ai个人(1<=ai<=50)。
接下来每行有一条命令,命令有4种形式:
(1) Add i j,i和j为正整数,表示第i个营地增加j个人(j不超过30)
(2)Sub i j ,i和j为正整数,表示第i个营地减少j个人(j不超过30);
(3)Query i j ,i和j为正整数,i<=j,表示询问第i到第j个营地的总人数;
(4)End 表示结束,这条命令在每组数据最后出现;
每组数据最多有40000条命令
Output
对第i组数据,首先输出“Case i:”和回车,
对于每个Query询问,输出一个整数并回车,表示询问的段中的总人数,这个数保持在int以内。
Sample Input
1
10
1 2 3 4 5 6 7 8 9 10
Query 1 3
Add 3 6
Query 2 7
Sub 10 2
Add 6 3
Query 3 10
End
Sample Output
Case 1:
6
33
59
C++
#include <iostream>
#include <cstdio>
#include <cstring>
#include <string>
#include <algorithm>
using namespace std;
const int MAXN = 50000 + 10;
int num[MAXN];
struct node{
int l, r, sum;
}segTree[MAXN << 2];
void build(int x, int l, int r)
{
segTree[x].l = l;
segTree[x].r = r;
if(l == r)
{
segTree[x].sum = num[l];
return;
}
int mid = l + r >> 1;
build(x << 1, l, mid);
build(x << 1 | 1, mid + 1, r);
segTree[x].sum = segTree[x << 1].sum + segTree[x << 1 | 1].sum;
}
void update(int x, int pos, int val)
{
if(segTree[x].l == segTree[x].r)
{
segTree[x].sum += val;
return;
}
int mid = segTree[x].l + segTree[x].r >> 1;
if(pos <= mid) update(x << 1, pos, val);
else update(x << 1 | 1, pos, val);
segTree[x].sum = segTree[x << 1].sum + segTree[x << 1 | 1].sum;
}
int query(int x, int l, int r)
{
if(segTree[x].l == l && segTree[x].r == r) return segTree[x].sum;
int mid = segTree[x].l + segTree[x].r >> 1;
int ans = 0;
if(r <= mid) ans = query(x << 1, l, r);
else if(l > mid) ans = query(x << 1 | 1, l, r);
else ans = query(x << 1, l, mid) + query(x << 1 | 1, mid + 1, r);
return ans;
}
int main()
{
int T;
scanf("%d", &T);
int cnt = 0;
string s;
while(T --)
{
int n;
scanf("%d", &n);
for(int i = 1; i <= n; i ++)
scanf("%d", &num[i]);
build(1, 1, n);
printf("Case %d:\n", ++ cnt);
int a, b;
while(cin >> s)
{
if(s == "End") break;
scanf("%d%d", &a, &b);
if(s == "Add") update(1, a, b);
else if(s == "Sub") update(1, a, -b);
else printf("%d\n", query(1, a, b));
}
}
return 0;
}