给出 n 个数对。 在每一个数对中,第一个数字总是比第二个数字小。
现在,我们定义一种跟随关系,当且仅当 b < c 时,数对(c, d) 才可以跟在 (a, b) 后面。我们用这种形式来构造一个数对链。
给定一个数对集合,找出能够形成的最长数对链的长度。你不需要用到所有的数对,你可以以任何顺序选择其中的一些数对来构造。
示例:
输入:[[1,2], [2,3], [3,4]]
输出:2
解释:最长的数对链是 [1,2] -> [3,4]
提示:
给出数对的个数在 [1, 1000] 范围内。
思路:首先对数组进行排序,排序基准是pair的第一位数。由于图方便写了冒泡排序,代码很简洁,但是这也导致时间复杂度很高就是了。排序之后建立数组dp,存储到对应位置时的最长数对链,然后对于每个位置都从头遍历,寻找可以与其组合的位置,再与现有的最长数对链比较,查看是否存在更长的数对链。
代码:
class Solution {
public:
int findLongestChain(vector<vector<int>>& pairs) {
sortpair(pairs);
int n=pairs.size();
vector<int> dp(n,1);
int i,j,maxi;
maxi=0;
for(i=0;i<n;i++)
{
for(j=0;j<n;j++)
{
if(pairs[i][0]>pairs[j][1])
{
dp[i]=max(dp[i],dp[j]+1);
}
}
if(dp[i]>maxi) maxi=dp[i];
}
return maxi;
}
void sortpair(vector<vector<int>>& pairs)
{
int len=pairs.size();
for (int i = 0; i < len - 1; i++)
{
for (int j = 0; j < len - 1 - i; j++)
{
if (pairs[j][0]>pairs[j+1][0])
{
int temp1=pairs[j+1][0],temp2=pairs[j+1][1];
pairs[j+1]=pairs[j];
pairs[j][0]=temp1;
pairs[j][1]=temp2;
}
}
}
}
};