给定一个包含 n + 1 个整数的数组 nums ,其数字都在 1 到 n 之间(包括 1 和 n),可知至少存在一个重复的整数。
假设 nums 只有 一个重复的整数 ,找出 这个重复的数 。
你设计的解决方案必须不修改数组 nums 且只用常量级 O(1) 的额外空间。
示例 1:
输入:nums = [1,3,4,2,2]
输出:2
示例 2:
输入:nums = [3,1,3,4,2]
输出:3
示例 3:
输入:nums = [1,1]
输出:1
示例 4:
输入:nums = [1,1,2]
输出:1
提示:
1 <= n <= 105
nums.length == n + 1
1 <= nums[i] <= n
nums 中 只有一个整数 出现 两次或多次 ,其余整数均只出现 一次
进阶:
如何证明 nums 中至少存在一个重复的数字?
你可以设计一个线性级时间复杂度 O(n) 的解决方案吗?
思路:数组下标的取值范围是0-n,数组元素的取值范围是1-n,因此可以将数组看做一个链表,每个链表表示数组的一个元素,将其视作下标得到的下一个数组元素即为链表的下一个元素,这个链表从0开始且不会回到0,其中有一个重复元素,这意味着链表中有一个环,这样就可以使用快慢指针的方法求解这道题。
代码:
class Solution {
public int findDuplicate(int[] nums) {
int f,s;
f = 0;
s = 0;
do
{
f = nums[f];
s = nums[s];
f = nums[f];
}
while(f != s);
s = 0;
while(f != s)
{
f = nums[f];
s = nums[s];
}
return s;
}
}