110. 平衡二叉树
思路:要比较每个节点所构成的左右子树的高度差是否超过1,需要利用后序遍历来求高度。
class Solution {
public boolean isBalanced(TreeNode root) {
return getDepth(root) != -1;
}
public int getDepth(TreeNode node) {
if(node == null) {
return 0;
}
int leftDepth = getDepth(node.left);
if(leftDepth == -1) {
return -1;
}
int rightDepth = getDepth(node.right);
if(rightDepth == -1) {
return -1;
}
if(Math.abs(leftDepth-rightDepth) > 1) {
return -1;
}
return 1 + Math.max(leftDepth, rightDepth);
}
}
小结:值得注意的点
- 当子节点所构成的左右子树高度之差不满足小于等于1时,子树不是平衡二叉树,从而导致整棵树也不是平衡二叉树。故在代码中体现为直接返回-1,并且判断传入对应节点所求得的高度是否为-1,若为-1则直接返回
- 由高度的定义可以知道:在求高度时,返回1+左右子树的最大高度
257. 二叉树的所有路径
思路:本题主要是涉及到回溯,需要把路径记录下来,需要回溯来回退一个路径,再进入另一个路径
class Solution {
/**
* 递归法
*/
public List<String> binaryTreePaths(TreeNode root) {
List<String> res = new ArrayList<>();
if (root == null) {
return res;
}
List<Integer> paths = new ArrayList<>();
traversal(root, paths, res);
return res;
}
private void traversal(TreeNode root, List<Integer> paths, List<String> res) {
paths.add(root.val);
// 叶子结点
if (root.left == null && root.right == null) {
// 输出
StringBuilder sb = new StringBuilder();
for (int i = 0; i < paths.size() - 1; i++) {
sb.append(paths.get(i)).append("->");
}
sb.append(paths.get(paths.size() - 1));
res.add(sb.toString());
return;
}
if (root.left != null) {
traversal(root.left, paths, res);
paths.remove(paths.size() - 1);// 回溯
}
if (root.right != null) {
traversal(root.right, paths, res);
paths.remove(paths.size() - 1);// 回溯
}
}
}
小结:值得注意的点
- Java中有关容器的使用和基本的一些转化函数掌握不够熟练
- 对于多个参数的递归掌握不够好,第一次尝试解决时根本没有想到传递更多的记录参数
404. 左叶子之和
思路:对左叶子的定义要清晰,不能只有左叶子本身来定义,需要用左叶子的父节点和左叶子本身来定义:节点A的左孩子不为空,且左孩子的左右孩子都为空
class Solution {
public int sumOfLeftLeaves(TreeNode root) {
if (root == null) return 0;
int leftValue = sumOfLeftLeaves(root.left); // 左
int rightValue = sumOfLeftLeaves(root.right); // 右
int midValue = 0;
if (root.left != null && root.left.left == null && root.left.right == null) {
midValue = root.left.val;
}
int sum = midValue + leftValue + rightValue; // 中
return sum;
}
}
小结:值得注意的点
- 实际上是为左叶子增加了虚拟节点,利用后序遍历来解决