时间复杂度:O(n),空间复杂度:O(1)
解题思路
动态规划法
每一天交易完后都会有两种状态,分别是未持有股票和持有股票,所以用dp[i][0]表示第i天交易后未持有股票的最大收益、dp[i][1]表示第i天交易后持有股票的最大收益。
接下来分析状态转移方程。对于dp[i][0],由于交易后没有持有股票,那么可能是前一天也没有持有股票也有可能是前一天持有股票但是今天把股票卖了,所以dp[i][0]的状态转移方程为:
dp[i][0]=max(dp[i-1][0],dp[i-1][1]+prices[i])
对于dp[i][1]也是同理,今天交易后持有股票那么有两种可能,一种是前一天也持有股票今天没有卖,另一种是前一天没有持有股票但是今天买了股票,所以dp[i][1]的状态转移方程为:
dp[i][1]=max(dp[i-1][1],dp[i-1][0]-prices[i])
最后的结果一定是未持有股票最大,所以返回dp[n-1][0]而不是dp[n-1][1]。
经过分析我们发现,状态转移方程只与前一天的状态有关,所以可以用滚动数组的方式降低空间复杂度,分别用dp0和dp1变量表示前一天未持有股票和持有股票的最大收益。
贪心法
严格证明参考官方题解,但我们可以将这种方法理解成不放过每一段上涨。从第二天开始,比较今日与昨日的股票价格,如果今日比昨日高那么卖出股票得到收益,否则就不买,这样最后的结果就是每天的收益之和。
AC代码
动态规划法
func maxProfit(prices []int) int {
dp0,dp1:=0,-prices[0]
for i:=1;i<len(prices);i++{
dp0,dp1=max(dp0,dp1+prices[i]),max(dp1,dp0-prices[i])
}
return dp0
}
func max(x,y int)int{
if x>y{
return x
}
return y
}
贪心法
func maxProfit(prices []int) int {
res:=0
for i:=1;i<len(prices);i++{
if prices[i]>prices[i-1]{
res+=prices[i]-prices[i-1]
}
}
return res
}
感悟
动态规划法易理解,贪心法更简单。