Diffusion Model

【李宏毅2023】

扩散模型:和其他生成模型一样,实现从噪声(采样自简单的分布)生成目标数据样本。

Image-to-Image

Denoise过程会连续经过很多次,图中step 1000和step 1 中的Denoise模块都是相同的。

Denoise的输入除了包含噪声的图片之外,还会额外输入一个数字,表示当前噪声严重的程度。下图中的1000就是刚开始Denoise的时候,1就代表Denoise的过程快结束了。每个Denoise都是相同的。

Denoise内部结构

Denoise中存在一个Noise Predicter,根据输入的噪声图片和噪声程度数据预测图片中的noise,然后将图片减去noise输出。这里之所以预测噪声没有预测去掉噪声的猫,是因为比较来说,预测噪声这个任务比预测去掉噪声的猫图片更容易。

对应的Noise Predicter训练过程

扩散模型包括两个过程:前向过程(forward process)和反向过程(reverse process),其中前向过程又称为扩散过程(diffusion process),反向过程可用于生成数据样本(它的作用类似GAN中的生成器,只不过GAN生成器会有维度变化,而DDPM的反向过程没有维度变化)。

前向过程逐渐增加噪声,每一步的噪声与结果就构成了Noise Predicter的输入和ground truth。

Text-to-Image

在此基础上,输入文本,输出图片。Denoise根据输入图片和图片的文本描述,输出去噪的图片。

Denoise内部结构

对应的Noise Predicter训练过程

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值