堆栈是一种经典的后进先出的线性结构,相关的操作主要有“入栈”(在堆栈顶插入一个元素)和“出栈”(将栈顶元素返回并从堆栈中删除)。本题要求你实现另一个附加的操作:“取中值”——即返回所有堆栈中元素键值的中值。给定 N 个元素,如果 N 是偶数,则中值定义为第 N/2 小元;若是奇数,则为第 (N+1)/2 小元。
输入格式:
输入的第一行是正整数 N(≤105)。随后 N 行,每行给出一句指令,为以下 3 种之一:
Push key
Pop
PeekMedian
其中 key
是不超过 105 的正整数;Push
表示“入栈”;Pop
表示“出栈”;PeekMedian
表示“取中值”。
输出格式:
对每个 Push
操作,将 key
插入堆栈,无需输出;对每个 Pop
或 PeekMedian
操作,在一行中输出相应的返回值。若操作非法,则对应输出 Invalid
。
输入样例:
17
Pop
PeekMedian
Push 3
PeekMedian
Push 2
PeekMedian
Push 1
PeekMedian
Pop
Pop
Push 5
Push 4
PeekMedian
Pop
Pop
Pop
Pop
输出样例:
Invalid
Invalid
3
2
2
1
2
4
4
5
3
Invalid
思路:使用lower_bound这个函数。
lower_bound( begin,end,num):从数组的begin位置到end-1位置二分查找第一个大于或等于num的数字,找到返回该数字的地址,不存在则返回end。通过返回的地址减去起始地址begin,得到找到数字在数组中的下标。
upper_bound( begin,end,num):从数组的begin位置到end-1位置二分查找第一个大于num的数字,找到返回该数字的地址,不存在则返回end。通过返回的地址减去起始地址begin,得到找到数字在数组中的下标。
在从大到小的排序数组中,重载lower_bound()和upper_bound()
lower_bound( begin,end,num,greater<type>() ):从数组的begin位置到end-1位置二分查找第一个小于或等于num的数字,找到返回该数字的地址,不存在则返回end。通过返回的地址减去起始地址begin,得到找到数字在数组中的下标。
upper_bound( begin,end,num,greater<type>() ):从数组的begin位置到end-1位置二分查找第一个小于num的数字,找到返回该数字的地址,不存在则返回end。通过返回的地址减去起始地址begin,得到找到数字在数组中的下标。
程序:
#include <cstdio>
#include <vector>
#include <algorithm>
#include <cstring>
#include <string>
#include <algorithm>
using namespace std;
int main()
{
int n;
vector<int> v1,v;
scanf("%d",&n);
vector<int>::iterator it;
while(n--)
{
char ch[15];
scanf("%s",ch);
string s = ch;
if(s == "Push")
{
int temp;
scanf("%d",&temp);
v1.push_back(temp);
it = lower_bound(v.begin(),v.end(),temp);
v.insert(it,temp);
}
else if(s == "Pop")
{
if(v1.size() == 0)
printf("Invalid\n");
else
{
it = lower_bound(v.begin(),v.end(),v1[v1.size()-1]);
v.erase(it);
printf("%d\n",v1[v1.size()-1]);
v1.pop_back();
}
}
else if(s == "PeekMedian")
{
if(v1.size() == 0)
{
printf("Invalid\n");
continue;
}
if(v.size() % 2 == 0)
printf("%d\n",v[v.size()/2-1]);
else
printf("%d\n",v[v.size()/2]);
}
}
return 0;
}