- 博客(3)
- 收藏
- 关注
原创 AlexNet
神经网络中的卷积层和全连接层执行的都是线性变换,如果没有激活函数,只是将这些线性层堆叠起来,其数学效果会“坍缩”,最终的数学效果都等价于一个单独的线性层。要求对卷积神经网络的基本概念和原理,了解深度卷积神经网络AlexNet的架构以 及各个组件的实现,并使用PyTorch框架搭建AlexNet及相应的训练与预测脚本,从而掌握 深度卷积神经网络的搭建、训练、测试过程以及相应的代码结构。它通过可学习的“滤波器”(权重w)在图像上滑动,以检测特定的视觉模式(如边缘、纹S理、颜色或更复杂的形状)。
2026-01-01 20:15:25
719
原创 三维视觉基础2
项目以“运动恢复结构”(Structure from Motion, SfM)与“多视图立体匹配”(Multi-View Stereo, MVS)为底层技术框架,通过程序化的特征提取、匹配、与几何解算,精确地恢复相机运动参数与场景的稀疏结构,并在此基础上生成具有真实纹理的稠密几何模型。当面对纹理稀疏(如白墙)、重复纹理(如砖墙)或视角变化巨大的场景时,传统算法(如SIFT)很难找到足够多且准确的对应点,这就好比盖房子没有找到足够牢固的承重点,后续的几何计算自然会产生巨大误差,导致模型有空洞、噪声大。
2026-01-01 19:56:32
779
原创 三维视觉基础1
calc_prism_star_geom(outer_R: float, inner_R: float, num_points: int, height: float): 接收星形外顶点半径 outer_R、内顶点半径 inner_R、角的数量 num_points 和高 height,返回星形棱柱的几何数据。calc_prism_geom(ne: int, r: float, h: float): 接收底面边数ne、外接圆半径r和高h,返回一个棱柱的几何数据。
2026-01-01 19:30:44
800
【计算机视觉】基于AlexNet深度卷积神经网络的花卉图像分类系统实现:模型训练与多类别识别性能分析
2026-01-08
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅