1074. 元素和为目标值的子矩阵数量

1074. 元素和为目标值的子矩阵数量

1074. 元素和为目标值的子矩阵数量

我的思路

暴力枚举

确定矩形的四个边界: t o p , b o t t o m , l e f t , r i g h t top, bottom, left, right top,bottom,left,right, 求该区域内数字的和 s u m sum sum,判断 s u m sum sum t a r g e t target target 的关系。

显然,该算法的时间复杂度为: O ( n 4 ⋅ n 2 ) O(n^4 \cdot n^2) O(n4n2),确定四个边界需要 O ( n 4 ) O(n^4) O(n4), 求和需要 O ( n 2

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
思路: 首先,我们可以将矩阵转化为一个二维数组,然后通过枚举矩阵的左上角和右下角坐标,来计算每个矩阵元素和。这样做的时间复杂度是 $O(n^4)$,显然不可取。 接下来,我们可以考虑优化这个算法。我们可以使用动态规划来解决这个问题。 首先,我们定义一个二维数组 $dp$,其中 $dp[i][j]$ 表示以 $(i,j)$ 为右下角的所有矩阵元素和最大的矩阵元素和。那么,我们可以得到如下的状态转移方程: $$ dp[i][j] = \begin{cases} matrix[i][j] & \text{if } i=0 \text{ or } j=0\\ dp[i-1][j] + dp[i][j-1] - dp[i-1][j-1] + matrix[i][j] & \text{otherwise} \end{cases} $$ 其中,$matrix$ 表示原始矩阵。 这个状态转移方程的含义是,以 $(i,j)$ 为右下角的所有矩阵中,最大的矩阵可能有以下三种情况: - 以 $(i,j)$ 为右下角的单个元素矩阵; - 以 $(i,j-1)$ 为右下角的最大矩阵,再加上第 $i$ 行的元素 $matrix[i][j]$; - 以 $(i-1,j)$ 为右下角的最大矩阵,再加上第 $j$ 列的元素 $matrix[i][j]$; - 以 $(i-1,j-1)$ 为右下角的最大矩阵,再加上第 $i$ 行和第 $j$ 列的元素 $matrix[i][j]$。 我们可以使用一个变量 $max\_sum$ 来记录所有矩阵元素和最大的矩阵元素和。同时,我们还需要记录这个最大矩阵的四个角的坐标 $(x1,y1,x2,y2)$。 最后,我们遍历 $dp$ 数组,找到其中最大的元素 $dp[i][j]$,就可以得到最大矩阵元素和以及四个角的坐标。 代码实现: 下面是 Python 代码的实现:
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值