1. 简介
动态规划是一种算法思想; 动态规划=递归式+子问题
1.1 案例1: 斐波那契数列
- 斐波那契数列:Fn=Fn-1+Fn-2
代码演示: 使用递归和非递归的方法来求解斐波那契数列的第n项;
递归的方法:
public static int fbnc(int n) {
if (n == 1 || n == 2) {
return 1;
}
return fbnc(n - 1) + fbnc(n - 2);
}
非递归的方法:
public static Long fbnc2(int n) {
ArrayList<Long> list = new ArrayList<>();
list.add(0L);
list.add(1L);
list.add(1L);
if (n > 2) {
for (int i = 0; i < n - 2; i++) {
long num = list.get(list.size() - 1) + list.get(list.size() - 2);
list.add(num);
}
}
return list.get(n);
}
对比发现,递归其实相比之下很慢递归子问题重复计算,假设n=6,是否递归存在子问题的重复计算:
- f(6)=f(5)+f(4)
f(5)=f(4)+f(3)
f(4)=f(3)+f(2)
f(4)=f(3)+f(2)
f(3)=f(2)+f(1)
f(3)=f(2)+f(1)
f(3)=f(2)+f(1)
f(2)=1
1.2 案例2:钢条切割问题
- 某公司出售钢条,出售价格与钢条长度之间的关系如下表:
问题:现在有一段长度为n的钢条和上面的价格表,求切割钢条方案,使得总收益最大;
假设现在钢条长度是4米,那么所有切割的方案如下:
如上图所示,长度为4的时候,有8种切割方案,当长度为n的时候
1.2.1 递推式:
长度为n的钢条切割后最优收益为rn,可以得出
- 第一个参数Pn 表示不切割;
- 其他n-1 个参数分别表示另外n-1种不同切割方案,对方案i=1,2,n-1
- 将钢条切割为长度为 i 和 n-i 两段;
- 方案i 的收益为切割两段的最优收益之和;
- 考察所有的i,选择其中收益最大的方案;
- 代码如下:
public static void main(String[] args) {
int[] arr = {0, 1, 5, 8, 9, 10, 17, 17, 20, 24, 30};
System.out.println("getMaxValue(arr,9) = " + getMaxValue(arr, 9));
}
public static int getMaxValue(int[] arr, int n) {
if (n == 0) {
return 0;
}else {
int res = arr[n];
for (int i = 1; i < n; i++) {
res = Math.max(res, getMaxValue(arr, i) + getMaxValue(arr, n - i));
}
return res;
}
}
1.2.2 最优子结构
- 可以将求解规模为n的原问题,划分为规模更小的子问题:完成依次切割后,可以将产生的两段钢条看成两个独立的钢条切割问题;
- 组合两个子问题的最优解,并在所有可能的两段分割方案中选取组合收益最大的,构成原问题的最优解;
- 钢条切割满足最优子结构,问题的最优解由相关子问题的最优解组合而成,这些子问题可以独立求解;
- 钢条切割问题还存在更简单的递归求解方法
- 从钢条的左边切割下长度为i的一段,只对右边剩下的一段继续进行切割,左边的不再切割;
- 递推式简化为
- 不做切割的方案就可以描述为:左边一段长度为n,收益为pn,剩余一段长度为0,收益为r0=0
- 代码如下所示:
public static void main(String[] args) {
int[] arr = {0, 1, 5, 8, 9, 10, 17, 17, 20, 24, 30};
System.out.println("getMaxValue(arr,9) = " + getMaxValue(arr, 9));
}
public static int getMaxValue(int[] arr, int n) {
if (n == 0) {
return 0;
} else {
int res = 0;
for (int i = 1; i < n + 1; i++) {
res = Math.max(res, arr[i] + getMaxValue(arr, n - i));
}
return res;
}
}
1.2.3 自顶向下递归实现
- 为什么自顶向下递归写出来的算法效率低下,因为存在子问题重复问题,时间复杂度是O(2^n)
由于递归算法重复求解相同子问题,效率低下;动态规划思想:每个子问题只求解一次,保存求解结果,之后需要此问题时,只需查找保存的结果即可;
public static void main(String[] args) {
int[] arr = {0, 1, 5, 8, 9, 10, 17, 17, 20, 24, 30};
System.out.println("getMaxValue(arr,9) = " + getMaxValue(arr, 9));
}
public static int getMaxValue(int[] arr, int n) {
if (n == 0) {
return 0;
}else {
int res = arr[n];
for (int i = 1; i < n; i++) {
res = Math.max(res, getMaxValue(arr, i) + getMaxValue(arr, n - i));
}
return res;
}
}
1.2.4 自下而上实现
- 时间复杂度O(n^2)
public static void main(String[] args) {
int[] arr = {0, 1, 5, 8, 9, 10, 17, 17, 20, 24, 30};
System.out.println("getMax(arr,9) = " + getMax(arr, 9));
}
public static int getMax(int[] arr, int n) {
List<Integer> list = new ArrayList<>();
list.add(0);
for (int i = 1; i < n + 1; i++) {
int res = 0;
for (int j = 1; j < i + 1; j++) {
res = Math.max(res, arr[j] + list.get(i - j));
}
list.add(res);
}
return list.get(n);
}
1.2.5 获取最优解的切割方式
基于原来的代码,将具体的切割方式打印出来
public static void main(String[] args) {
int[] arr = {0, 1, 5, 8, 9, 10, 17, 17, 20, 24, 30};
System.out.println("getMax(arr,9) = " + getMaxExtend(arr, 9));
}
public static List<Integer> getMaxExtend(int[] arr, int n) {
List<Integer> result = new ArrayList<>();
result.add(0);
List<Integer> typeList = new ArrayList<>();
typeList.add(0);
for (int i = 1; i < n + 1; i++) {
int res = 0; //价格的最大值
int type = 0;
for (int j = 1; j < i + 1; j++) {
if (arr[j] + result.get(i - j) > res) {
res = arr[j] + result.get(i - j);
type = j;
}
}
result.add(res);
typeList.add(type);
}
List<Integer> objects = new ArrayList<>();
while (n > 0) {
objects.add(typeList.get(n));
n = n - typeList.get(n);
}
return objects;
}