- 博客(20)
- 收藏
- 关注
原创 《机器学习实战》-回归树剪枝函数
他用matplotlib复现了书中的图,书中应该不是用的这个库,但说后面会教我就暂时没有相关这个事情,但使用了他的代码后,我非常兴奋的得到了直观的图片。今天太混乱了,因为早八打破了我的作息,于是我回来后吃饭玩游戏睡觉,醒来就下午7点了,又去吃饭然后写了一会代码,就到了十二点。我的出产如此之低,主要是我在白天没有敲代码,而现在十二点,我又想睡觉了。我觉得我的分类器有问题,而gpt无法解决,因为gpt在比较专业和深入的地方也会因为种种原因而无法解决问题,在这种时候,google是更准确的。
2024-11-06 00:27:32 98
原创 《机器学习实战》py3_树回归前三小节
今天这个树回归,几乎书上每个字都要慢慢读,有不少特殊名词,就啃的比较慢了,最后也是得出和书中一样的输出,但是py2里面的mat到底换成什么?gpt说是array,vscode报错让我用np.asmatrix。乐高预测的由于没有api不好搞,试了试淘宝的api,申请好麻烦,找的很伤神,就暂时不实现了。晚上学一点数据分析,再更一章。
2024-11-04 17:58:00 73
原创 py数据分析,元组和以好坏学生为主题的谈论
而物质上,对于攀比心重的青少年可能也是很痛苦的事情,但我们的文化里面,一个成绩好的学生,哪怕比较穷,我们反而会更强调他的未来会改变他的境遇。而那些叫嚣着不消费经济会变差的人,我的希望是,我希望大家的存款和资产都多多的,而不是家里的商品堆的多多的。而富裕的家庭的孩子如果成绩不好,就会被种种否定和非议了,似乎做什么都不对,何况他们的亲戚们的孩子们会更有出息,这方面长辈们的攀比和逢年过节的尴尬似乎会有更大的压力。我的同学们对哲学,历史,文学,艺术是一窍不通的,地理国别上奇特的发问令我惊奇。
2024-11-03 19:32:11 582
原创 机器学习实战,前向逐步线性回归
看了点langchain的书,但是这种更新很快的框架看书不太是个好选择。搞了好一会无法实现一个已经被取消了的llmchain的功能,气的我要放弃。但现在回想一下,还是应该继续推进,但我不把优先级放那么高了。这些框架,一直改变的话,学习成本反而很高,不灵活,数据类型也很混乱。我觉得自己在用黑箱,而一旦出错,因为数据少的原因gpt也解决不了,网上慢慢找又太费时间了。
2024-11-03 15:25:40 148
原创 langchain入门指南:整合为链
在推书时,再次遇到多个版本问题,简单的说就是书上的代码在新版本是无法运行的,我需要一个个找gpt帮我解决版本问题。我也想读最新的英文书,但我觉得很慢。在尝试了langchain后,我发现这个框架并不好用,暂时不会再考虑langchain。这意味着我要重新使用之前处理机器学习那本书的老办法了。
2024-11-03 13:11:10 65
原创 langchain入门,提示词模板
我不知道你们怎么喝咖啡的,我之前是把咖啡磨成粉后用法压壶过滤,但我后来发现咖啡粉过一二分钟自己就沉下去了,压根不需要专门去过滤。从信息论的角度来说,我现在学的和发出来的内容,是没有什么信息量的。从吴军博士的讲解来看,信息比金钱还重要,沃森一页揭示DNA双链结构的论文就取得诺贝尔奖。如果不能用刚刚接触,每一步都要搜索来解释的话,就只能用游戏过度来解释我缓慢而很快就疲惫的情况了。写这点东西花了我不少时间,我用万事开头难来应付。所以我的内容里不多的价值就是我在把书上内容实现落地的解决方法。
2024-11-02 15:07:07 94
原创 浅谈对波比的对线理解,末尾有总结
兰博有盾,出肉是不足以单杀的,所以也会失去线权,不能all in的人就没线权。男不可避免的需要几乎全部的属性,但有w和r的波比是有主动权的,不灭的波比就像一个永远不能决战的投掷标枪者,这样就是一个比较暴力的战士波比了,我们要知道的是这样的波比基本上在打团的时候作用就不大了,但为了对线这又。要赢游戏,几乎都要保持主动,所以在出了小件后不应该攒钱出防装的大件,那会有一段时间的乏力期,出了大件本身。总是主动的,而 Tp在升级后才可能主动,但如果对线输了,Tp支援反而会炸的更惨,便更加的保守了。
2024-11-02 01:33:26 351
原创 LangChain入门,国内gpt的API获取,使用第三方服务要修改URL
不能运行的代码,我很难受,但客服的确没有及时的回复我,而我不可能等着他。我在上一篇博文里说人工智能技术是对人类智能的模拟,是一种临摹,这好像对我的初心进行了贬低,我本以为能创造生命,却又是制作一种幻象,那我为什么不去做一个画家或者小说家呢?虽然我觉得llm不是拥有生命和思考的技术,但是,我在NLP算法实习工程师的要求里看到了对这个技术的要求,所以我提前了解了。我学的还太少,但我希望我得到的不是幻象,因为我觉得那些东西的意义不大,所以我才放弃了其他职业而选择这个。虽然我看的懂一些英文,但我不怎么看报错。
2024-11-01 18:13:13 420
原创 深度学习;张量3
我打算再推另一本书,有关自然语言处理的。机器学习哪一本我可能要等到我需要的时候再看了,因为我目前还是以NLP为目标的,机器学习似乎不是必要的。API 的通俗解释是,它就是一组“说明书”,规定了不同的软件或系统如何相互“交谈”或“合作”。为了处理大量数据,进行向量计算,pytorch有自己的数据类型。一般使用32位,索引使用64位。3.5张量的元素类型。3.6张量的 API。
2024-10-30 18:04:16 180
原创 闲谈—2024.10.30AM
大学和中学是不一样的,在中学我们知道谁也猜不到高考考什么,所以对例题不是很上心,但对于大学来说,老师说考的,起码里面的公式是会考的,在最后一节课或者在考前的复习课或者群里发的题目,在紧急关头,老师发出的东西,他说不会考也是会考的。该书的书评里有名人说应该关注亚当斯密这一方面的工作,但我可以说,他的同情心(同理心)是完全存在的,对于人们追求名利财富的分析是正确的角度之一,但不是必须掌握的,而国富论却是实实在在的真实的必须阅读的。这样技艺是创造智能的技艺,是模仿人类思维的技艺,与绘画和音乐是同属的。
2024-10-30 11:27:28 759
原创 用pytorch把马的照片变成斑马的实验-深度学习实战
与机器学习相比,深度学习让我感到振奋。这个效果非常的明显,不过仔细看牛仔的裤子也被“斑马”化了,不过随着技术的发展,工具的不断优化,效果会越来越好,更何况这是书上实现的简单的模型和过去的工具了。其中遇到的主要问题是把png照片转换为jpg的,因为原模型是使用的三个通道的jpg模型。这本书的github,我还找了一会。里面有很多源码和文件,是必须的。下一节是有关自然语言处理的,也是我最感兴趣的一部分。
2024-10-28 14:15:59 290
原创 深度学习实战(伊莱史蒂文斯) 2.1识别金毛狗
在用win10默认的编辑图片的软件前,我是用截图直接从pdf里截图来推理,但正确率很低,于是我就使用工具把照片压缩成224x224 像素,这样就有很高的准确率了。还有就是使用matplotlib来看我裁剪后的照片,因为书上的代码显示不出照片,我是问gpt才得到这个替代方法,不得不说没有gpt我真不知道要被多少难题困死。我在写了几天博客后发现,最好还是把要表达的大小放在代码注释了为好,这是这本书里的第一个任务,使用resnet101网络来识别一张图片。从1000个标签中。
2024-10-27 21:23:30 226
原创 微积分,线性代数,概率论,统计学推书
数学很重要,但时间紧迫的情况下,我们大可以用通俗的概念去理解,但我希望在喧嚣过去后,我们能沉浸在数学之中,学习数学是快乐的,学习任何知识都是快乐的,而数学是求知欲中最纯粹的快乐之一。以我个人的一些经验来说,很多书,中后面的每一章的最后面一两节是很难的拓展,初学者是不容易看懂的,还有要一定的实操经验才能看懂,这些章节草草过一遍就行了,不能钻牛角尖,我就是在这些地方浪费了很多时间。有的书目录上写的好,读起来都是空荡荡的,有的人开头一副热心教你的样子,读半后,发现他突然刷出一堆不知道哪里冒出来的知识。
2024-10-27 14:36:59 321
原创 pytorch的安装,vscode,miniconda
我是使用了miniconda的虚拟环境配置的pytorch,这也是我在上次下载中听到的其他人的建议,但现在回想起来,我似乎不需要这种虚拟环境。我一开始是看的李沐等人写的书,在英伟达官网下载cuda之类的东西,但我现在的了解是,pytorch里都有cuda库,那本书应该是使用的另一个框架,要自己配置cuda,那就更不容易了。但,我失败了,所以我去先学习了机器学习。但是在学了一阵子机器学习后,我发现这种技术是一种处理数据的技术,而不是我期待的,一种可以通往通用性人工智能的途径,于是我转向深度学习。
2024-10-27 14:01:11 413
原创 机器学习8
前向逐步线性回归是一种逐步回归方法,用于选择最重要的特征来构建线性回归模型。其基本思想是从一个空模型开始,逐步添加特征,直到找到最佳模型。
2024-10-26 17:15:01 440
原创 机器学习实战8.1-py3 标准回归函数和数据导入函数
除了np.array替换mat,还有例如用@替换*,dot()点乘的使用我还不是很看得懂,有些简单熟悉的代码我都开始不准备再现一遍了,以便加速推书速度。
2024-10-26 12:29:59 103
原创 机器学习实战—7.5 测试算法:基于AdaBoost的分类
所以从命名上来谈,是文心>kim>豆包,从技术来说我暂时看不出他们有多大的不同,我之前使用文心,但后来我嫌她太慢了,用了kimi,kimi在专业一些的领域就开始胡言乱胡。在使用gpt辅助我转换代码后推书的效率很高,因为gpt发图片要收费,而且付费不能使用我能提供的,所以我就用kimi和豆包为我把pdf里的代码转换为文本然后发给gpt。kimi在给我转换了十多次后开始错误频出,不知道是不是不想干这种识别图片的脏活累活,我就又去用了豆包,这是edge在我搜索kimi的时候置顶推荐给我的。自适应增强学习算法。
2024-10-25 17:27:07 236
原创 peter的机器学习实战,SVM的python3实现
但是对于核函数的数学理解十分欠缺,而我暂时只是打算把书上的代码实现一般而不指望彻底弄明白,在这样的心态下我被困在了数据结构上。简而言之就是把mat变成array等等,一维二维矩阵,矩阵乘法时格式不对应,标量无法广播等等情况。这些情况的出现是因为py3中没有py2的一些数据结构。话不多说,这是我反复试错得到的一个大差不大的代码。困扰了我三分之一天的一个困难,就是6.6.3的测试使用核函数。我一直在用gpt和kimi辅助我转换代码格式,从原书的py2到我的py3。
2024-10-25 11:17:39 129
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人