智能交通系统是利用先进的技术和数据分析方法来管理和优化交通流动的系统。其中,交通流量预测是智能交通系统中的一个重要任务,它可以帮助交通管理部门预测未来的交通状况,从而采取相应的措施来改善交通拥堵问题。深度学习是一种强大的机器学习方法,已经在交通领域取得了显著的成果。本文将介绍深度学习在交通流量预测中的应用,并提供相应的源代码示例。
在交通流量预测中,我们通常使用历史交通数据来预测未来的交通流量。这些数据包括道路的车辆数量、车速、交通事件等信息。深度学习可以通过学习历史数据的模式和趋势,来预测未来的交通流量。下面是一个使用长短期记忆网络(Long Short-Term Memory, LSTM)进行交通流量预测的示例代码:
import numpy as np
import pandas as pd
from keras.models import Sequential
from</