Description
若一个数(首位不为零)从左向右读与从右向左读都一样,我们就将其称之为回文数。 例如:给定一个10进制数56,将56加56(即把56从右向左读),得到121是一个回文数。 又如:对于10进制数87: STEP1:87+78 = 165 STEP2:165+561 = 726 STEP3:726+627 = 1353 STEP4:1353+3531 = 4884 在这里的一步是指进行了一次N进制的加法,上例最少用了4步得到回文数4884。 写一个程序,给定一个N(2<=N<=10,或N=16)进制数M,求最少经过几步可以得到回文数。如果在30步以内(包含30步)不可能得到回文数,则输出“Impossible!”
Input
输整数N和M
Output
STEP=<输出正整数s>,表示经过s步加法后可得到回文数。如果s>30,则输出Impossible!
Sample Input
9 87
Sample Output
STEP=6
代码如下:
#include <iostream>
#include <cstring>
#include <cmath>
#include <algorithm>
using namespace std;
long long changeToten(int num,string s)
{
long long sum=0;
int length=s.length();
if(num<10)
{
for(int i=0;i<length;i++)
{
if(s[i]!='0')
sum+=(s[i]-'0')*pow(num,length-i-1);
}
}
else//十六进制转换十进制
{
for(int i=0;i<length;i++)
{
if(s[i]>'9')
{
sum+=(s[i]-'A'+10)*pow(num,length-i-1);
//A=10,B,C...以此类推
}
else
{
sum+=(s[i]-'0')*pow(num,length-i-1);
}
}
}
return sum;
}
bool judge(int num,long long t)
{
string s;
while(t)
{
int tmp=t%num;
t/=num;
if(tmp<=9)
{
s+=tmp+'0';
}
else
{
s+=tmp-10+'A';
}
}
reverse(s.begin(),s.end());
int length=s.length();
for(int i=0;i<length/2;i++)
{
if(s[i]!=s[length-1-i])
return false;
}
return true;
}
int main()
{
int num;string s;
cin>>num>>s;
int count=0;
while(count<=30)
{
count++;
string ss=s;
reverse(ss.begin(),ss.end()); //字符串调头
long long tmp1=changeToten(num,s);
long long tmp2=changeToten(num,ss);
if(judge(num,tmp1+tmp2)) break;
s.clear();
long long t=tmp1+tmp2;
while(t)
{
int tmp=t%num;
t/=num;
if(tmp<9)
{
s+=tmp+'0';
}
else
{
s+=tmp-10+'A';
}
}
reverse(s.begin(),s.end());
}
if(count<=30)
cout<<"STEP="<<count<<endl;
else
cout<<"Impossible!"<<endl;
}
博客已搬:
洪学林博客