费曼先生 找数学家“麻烦”

对数学家来说,拓扑学可不是那么简单的学问,其中有一大堆千奇百怪的可能性,完全“反直觉”之道而行。于是我又想到一个主意了。

我向他们挑战:“我跟你们打赌,随便你提出一个定理——只要你用我听得懂的方式告诉我,它假设些什么、定理是什么等等——我立刻可以告诉你,它是对的还是错的!” 

然后会出现以下的情况:他们告诉我说,“假设你手上有个橘子。那么,如果你把它切成N片,N并非无限大的数。现在你再把这些碎片拼起来,结果它跟太阳一样大。这个说法对还是错?” 

“一个洞也没有?” 
“半个洞也没有。” 
“不可能的!没这种事!” 
“哈!我们逮到他了!大家过来看呀!这是某某的‘不可量测量’定理!” 

就在他们以为已经难倒我时,我提醒他们:“你们刚才说的是橘子!而你不可能把橘子皮切到比原子还薄、还碎!”

“但我们可以用连续性条件:我们可以一直切下去!” 

“不,不,你刚才说的是橘子,因此我假定你说的,是个真的橘子。” 

因此我总是赢。如果我猜对,那最好。如果我猜错了,我却总有办法从他们的叙述中找出漏洞。 

其实,我也并不是随便乱猜的。我有一套方法,甚至到了今天,当别人对我说明一些什么,而我努力要弄明白时,我还在用这些方法——不断地举实例。

譬如说,那些念数学的提出一个听起来很了不得的定理,大家都非常兴奋。当他们告诉我这个定理的各项条件时,我便一边构思符合这些条件的情况。当他们说到数学上的“集”时,我便想到一个球,两个不相容的集便是两个球。然后视情况而定,球可能具有不同的颜色、长出头发或发生其他千奇百怪的状况。最后,当他们提出那宝贝定理时,我只要想到那跟我长满头发的绿球不吻合时,便宣布:“不对!” 

如果我说他们的定理是对的话,他们便高兴得不得了。但我只让他们高兴一阵,便提出我的反例来。“噢,我们刚才忘了告诉你,这是豪斯道夫的第二类同态定理。” 

于是我说:“那么,这就太简单,太简单了!”到那时候,虽然我压根儿不晓得豪斯道夫同态到底是些什么东西,我也知道我猜的对不对了。虽然数学家认为他们的拓扑学定理是反直觉的,但大多数时候我都猜对,原因在于这些定理并不像表面看起来那么难懂。慢慢地,你便习惯那些细细分割的古怪性质,猜测也愈来愈准了。

——摘自《别闹了,费曼先生》

内容概要:本文详细探讨了基于樽海鞘算法(SSA)优化的极限学习机(ELM)在回归预测任务中的应用,并与传统的BP神经网络、广义回归神经网络(GRNN)以及未优化的ELM进行了性能对比。首先介绍了ELM的基本原理,即通过随机生成输入层与隐藏层之间的连接权重及阈值,仅需计算输出权重即可快速完成训练。接着阐述了SSA的工作机制,利用樽海鞘群体觅食行为优化ELM的输入权重和隐藏层阈值,从而提高模型性能。随后分别给出了BP、GRNN、ELM和SSA-ELM的具体实现代码,并通过波士顿房价数据集和其他工业数据集验证了各模型的表现。结果显示,SSA-ELM在预测精度方面显著优于其他三种方法,尽管其训练时间较长,但在实际应用中仍具有明显优势。 适合人群:对机器学习尤其是回归预测感兴趣的科研人员和技术开发者,特别是那些希望深入了解ELM及其优化方法的人。 使用场景及目标:适用于需要高效、高精度回归预测的应用场景,如金融建模、工业数据分析等。主要目标是提供一种更为有效的回归预测解决方案,尤其是在处理大规模数据集时能够保持较高的预测精度。 其他说明:文中提供了详细的代码示例和性能对比图表,帮助读者更好地理解和复现实验结果。同时提醒使用者注意SSA参数的选择对模型性能的影响,建议进行参数敏感性分析以获得最佳效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值