控制台横向输出二叉树树形结构(C++)

效果预览

效果图

思路说明

测试用数据选择的都是两位数,所以二叉树每层设计成横向占3个字符,其中第一个字符是┌或└,'┌’表示是从父节点向上拐过来的,'└’表示向下拐过来的,后面两位留给数字。

输出的树形每一行只会有一个数字出现,且数字之后不是换行(叶节点)就是表示有子树需要分叉的’┤’等。所以输出时主要考虑节点数字前的前置输出,主要包括两方面:

一是与控制台最左边相隔的距离,可以根据当前节点的深度,或者当前节点处于第几层来确定,因为每层长度固定为3。当然这段输出并不全是空格的,前面某些层发出的树枝,即’│’,可能会对后面节点的前置输出造成影响。比如演示图中的16,25和15发出的分支都对16的前置造成了影响(16前面的└与16归属同一层,直接与路径最后是上拐还是下拐相关)。

第二步就是确定这段距离中需要在哪些位置出现’│’。某一层的三个占位中’│’只有可能出现在第一个,而至于前置的几层中哪几个地方会出现’│’,通过观察找规律可以发现与已走过路径的异或值相关。具体的,预览图中的16,其走过的路径为“下下上下”,从第二位将每一位与前一位异或,结果是“011”,所以前置路径就是“ ” + "│ " + "│ "。当然还需要加上根节点所在那一层的三个空格(注意50前面留了一个空格)。然后再根据路径最后的值选择16前面是┌或└,然后输出16,再根据16的子树情况选择是否要输出┐┘┤这些(这些是为下一层留下的东西)。


节点与其他一些变量的定义,数据插入函数(这里用二叉排序树做的例子)
#define RIGHT '0'
#define LEFT '1'
string up_right = "┌";
string down_right = "└";
string up_left = "┐";
string down_left = "┘";
string T_cross = "┤";
string line = "│";

typedef struct BSTNode
{
    int key;
    struct BSTNode *left, *right;
} BSTNode;

BSTNode *Insert(BSTNode *T, int key)
{
    if (T == NULL)
    {
        T = new BSTNode();
        T->key = key;
        T->left = NULL;
        T->right = NULL;
        return T;
    }
    else if (T->key == key)
        return T;
    else if (T->key > key)
        T->left = Insert(T->left, key);
    else if (T->key < key)
        T->right = Insert(T->right, key);

    return T;
}
打印二叉树
void ShowTree(BSTNode *T, string way = "") // way表示达到该节点走过的路,从根开始,向右是'0',向左是'1'
{
    if (T->right != NULL)
    {
        string right_way = way + RIGHT;
        ShowTree(T->right, right_way);
    }

    string pre;            // 打印节点前需要输出的前置数据
    if (way.length() == 0) // 根节点,不考虑前置输出,这里输出一个空格
        pre = " ";
    else
    {
        pre = "   ";  // 这三个空格来自根节点那一层
        for (int i = 1; i < way.length(); i++)
        {
            // 按照异或关系补全前置输出
            if (way.at(i) != way.at(i - 1))
            {
                pre += line;
                pre += "  ";
            }
            else
            {
                pre += "   ";
            }
        }
        int l = way.length();
        // 根据最后一次转弯方向选择数字前面的符号
        if (way.at(l - 1) == '0')
            pre += up_right;
        else
            pre += down_right;
    }

    cout << pre << setw(2) << T->key;
    // 根据左右子树情况为下一层留下分叉标志
    if (T->left != NULL && T->right != NULL)
        cout << T_cross;
    else if (T->left != NULL && T->right == NULL)
        cout << up_left;
    else if (T->left == NULL && T->right != NULL)
        cout << down_left;
    cout << endl;

    if (T->left != NULL)
    {
        string left_way = way + LEFT;
        ShowTree(T->left, left_way);
    }
}

测试用例
int main()
{
    int nums[20] = {50, 75, 25, 90, 60, 40, 15, 100, 86, 80, 88, 69, 58, 52, 46, 39, 18, 12, 20, 16};
    BSTNode *T = NULL;
    for (int i = 0; i < 20; i++)
        T = Insert(T, nums[i]);
    ShowTree(T);
}
/* 这是一个在字符环境中,用ASCII码打印二叉树形状的算法。 在Linux控制台下写的例题,在DOS中稍有点乱。 采用层次遍法。 算法拙劣,仅供初学者做练习,(本人也是初学者,自学数据结构,刚好学到这二叉树这一章, 半路出家,基础差有点吃力头大,搞几个二叉的例题,却不知道其构造形状, 想调用图形API做个美观点的,却有点偏离本章的学习目的,只好用字符打印, linux环境中打印的还可以,DOS中有点不稳定,如果您有更好的算法一定不吝赐教。 我的QQ:137241638 mail:hnflcp@139.com */ #include <stdio.h> #include <stdlib.h> #define MaxSize 100 //Pstart是二叉树根结点在一行中的位置,一行最能打印124个字符,取其1/2。 //如果你的屏不够宽的话,可以输出文本文件里, aa.exe>>aa.txt #define Pstart 40 typedef struct bstnode { int key, data, bf; struct bstnode *lchild, *rchild; }BSTNode; typedef struct pnode //为打印二叉树建了一个结构。 { int key; //关键字数据1 int data; //关键字数据2 struct pnode *lchild, //左孩子 *rchlid, //右孩子 *parent; //父节点 int lrflag, //标记本节点是左孩子(等于0时),还是右孩子(等于1时) space, //存储本节点打印位置 level; //存储本节点所在层次。 }PBSTNode; /*建立二叉树。 用括号表示法表示二叉树字符串,创建二叉树。 */ BSTNode* CreateBSTNode(char *s) { char ch; BSTNode *p=NULL, *b=NULL, *ps[MaxSize]; int top=-1, tag=-1; ch=*s; while(ch) { switch(ch) { case '(':ps[++top]=p;tag=1;break; case ',':tag=2;break; case ')':top--;break; default: p=(BSTNode*)malloc(sizeof(BSTNode)); p->data=ch; p->lchild=p->rchild=NULL; if(b==NULL) b=p; else { switch(tag) { case 1:ps[top]->lchild=p;break; case 2:ps[top]->rchild=p;break; } } } ch=*(++s); } return b; } //用适号表示法打印二叉树。 void DispBSTNode(BSTNode *b) { if(b!=NULL) { printf("%d",b->key); if(b->lchild!=NULL||b->rchild!=NULL) { printf("("); DispBSTNode(b->lchild); if(b->rchild!=NULL)printf(","); DispBSTNode(b->rchild); printf(")"); } } } int BSTNodeHeight(BSTNode *b) { int lchildh,rchildh; if(b==NULL)return 0; else { lchildh=BSTNodeHeight(b->lchild); rchildh=BSTNodeHeight(b->rchild); return (lchildh>rchildh)?(lchildh+1):(rchildh+1); } } /*建立一个二叉树打印结点的信息, 只被int CreatePBSTNode(BSTNode *b,PBSTNode *pqu[])调用*/ void SetPBSTNodeInfo(BSTNode *b,PBSTNode *parent,PBSTNode *pb,int level,int lrflag) { int f=3; pb->data=b->data; pb->key =b->key; pb->parent=parent; pb->level=level; pb->lrflag=lrflag; pb->space=-1; } /*用层次遍历法,BSTNode结构存储的二叉树转换为,PBSTNode结构的二叉树*/ int CreatePBSTNode(BSTNode *b,PBSTNode *pqu[]) { BSTNode *p; BSTNode *qu[MaxSize]; int front=-1, rear=-1; rear++; qu[rear]=b; pqu[rear]=(PBSTNode*)malloc(sizeof(PBSTNode)); SetPBSTNodeInfo(b,NULL,pqu[rear],1,-1); while(rear!=front) { front++; p=qu[front]; if(p->lchild!=NULL) { rear++; qu[rear]=p->lchild; pqu[rear]=(PBSTNode*)malloc(sizeof(PBSTNode)); SetPBSTNodeInfo(p->lchild,pqu[front],pqu[rear],pqu[front]->level+1,0); } if(p->rchild!=NULL) { rear++; qu[rear]=p->rchild; pqu[rear]=(PBSTNode*)malloc(sizeof(PBSTNode)); SetPBSTNodeInfo(p->rchild,pqu[front],pqu[rear],pqu[front]->level+1,1); } } return rear; } //打印一层结点,及该层结点与父结点的连线路径。 void PBSTNodePrint_char(PBSTNode *pb[],int n,int h) { int l=-1, r=0, i,j,k, end; char c; PBSTNode *p; if(n<=0||h<=0) { return; } else if(pb[0]->level==1) { for(i=0;i<pb[0]->space;i++) printf(" "); printf("%c",pb[0]->data); printf("\n"); return; } h=h-pb[0]->level+2; for(k=0;k<h;k++) { j=0; l--; r++; for(i=0;i<n;i++)//打印线条 { p=pb[i]; end=(p->lrflag==0)?l:r; end+=p->parent->space; for(;j<end;j++) printf(" "); c=(p->lrflag==0)?'/':'\\'; printf("%c",c); } printf("\n"); } for(i=0;i<n;i++)//计算本层结点打印位置 { p=pb[i]; if(p->lrflag==0) p->space=p->parent->space+l; else p->space=p->parent->space+r; } for(i=0,j=0;i<n;i++)//打印关键字数据 { p=pb[i]; for(;j<p->space;j++) printf(" "); printf("%c",p->data); } printf("\n"); } //循环打印所有层的数据 void DispBTree(BSTNode *b) { int n,i,j,high, level; PBSTNode *p; PBSTNode *pqu[MaxSize]; PBSTNode *levelpqu[MaxSize]; n=CreatePBSTNode(b,pqu); high=BSTNodeHeight(b); j=0; level=1; pqu[0]->space=Pstart; for(i=0;i<=n;i++) { p=pqu[i]; if(p->level==level) { levelpqu[j]=p; j++; } else { PBSTNodePrint_char(levelpqu,j,high); level=p->level; j=0; levelpqu[j]=p; j++; } } PBSTNodePrint_char(levelpqu,j,high); } void main() { int iDepth=0, iWidth=0, iCount=0; char *str1="A(B(D,E(H,X(J,K(L,M(T,Y))))),C(F,G(X,I)))"; char *str2="A(B(D(,G)),C(E,F))"; BSTNode *b=CreateBSTNode(str1); DispBSTNode(b);printf("\n"); iDepth=BSTNodeHeight(b); printf("Depth:%d\n",iDepth); DispBTree(b); }
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值