动态规划——learning now

哪些题可以用动态规划来做?

  • 计数
    • 有多少种方式走到右下角
    • 有多少种方法选出k个数使得和是Sum
  • 求最大最小值
    • 从左上角走到右下角路径的最大数字和
    • 最长上升序列长度
  • 求存在性
    • 取石子游戏,先手是否必胜
    • 能不能选出k个数使得和是Sum

DP算法

动态规划的意义就是通过采用递推(或者分而治之)的策略,
通过解决大问题的子问题从而解决整体的做法。

动态规划的核心思想是巧妙的将问题拆分成多个子问题,通过计算子问题而得到整体问题的解。
而子问题又可以拆分成更多的子问题,从而用类似递推迭代的方法解决要求的问题。

动态规划组成部分

  • 确定状态
  • 转移方程
  • 初始条件(f(0)时)和边界情况(数组越界)

解决步骤

  • 确定状态
    • 解动态规划的时候需要开一个数组,数组的每个元素f[i] 或f[i][j] 代表什么
  • 两个意识:
    • 最后一步
    • 子问题

Coin Change

  • 三种硬币 分别面值2元,5元 和7元 每种硬币都足够多
  • 买一本书需要27元
  • 如何用最少的硬币组合正好付清,不需要对方找钱

设状态:
f(k) = 最少用多少枚硬币拼出k元
所以 :
f(27) = min{ f(27-2)+1,f(27-5)+1,f(27-7)+1 }

递归解法

int f(int X){
	if(X==0) return 0;
	int res = Integer.MAX_VALUE;
	if(X>=2) res = Math.min(f(X-2)+1,res);
	if(X>=5) res = Math.min(f(X-5)+1,res);
	if(X>=7) res = Math.min(f(X-7)+1,res);
	return res;
}

// 最优策略为k枚硬币
//	dp[n] 为k枚硬币中第n个的面值
//	27 = dp[n] +dp[n-1]


dp解法


                           // {2,5,7}    27
    public static int DP06(int[] arr,int X){

        确定状态 f[i]  : 最少用f[i] 种方法凑够i元
        int dp[] = new int[X+1];
        dp[0] = 0;
        int n = arr.length;
        转移方程  f(27) = min{ f(27-2)+1,f(27-5)+1,f(27-7)+1 }
        int i ,j;
        for (j = 0; j < X; j++) {
            dp[j] = Integer.MAX_VALUE;
            for (i = 0; i < n; i++) {
                // dp[A] A可能为负
                // MAX_VALUE +1 结果在计算机里面为负
                if (j>arr[i]&&dp[j]!=Integer.MAX_VALUE){
                dp[j] = Math.min(dp[j-arr[i]],dp[j] );
                }
            }
        }
        if (dp[X] == Integer.MAX_VALUE) return -1;
        return dp[X];
    }

Fibonicci 递归

递归思想 Fibonicci数列

```

public static int Fibonacci(int n){
    // 递归法 复杂度O(2^n)
    if (n==1) return 1;
    if (n==2) return 2;
    return Fibonacci(n-1)+Fibonacci(n-2);
}

```

DP策略 Fibonicci数列 将计算过的f(n)保存起来

```
 private static int[] arr = new int[50];

 public static int DP02(int n){
    if (n<=2) return 1;
    if (arr[n]!=0) return arr[n];
    else {
        arr[n] = Fibonacci(arr[n-1])+Fibonacci(n-2);
        return arr[n];
    }
 //arr数组初始化为0,arr[i]就表示f(i),
// 每次先判断arr[i]是否为0,如果为0则表示未计算过,则递归计算,
// 如果不为0,则表示已经计算过,那就直接返回。
    ```

机器人走格子

  /*
    *   机器人走格子  只能向下或者向右走一步
    *   问有多少种不同的方法可以到达最右下角的格子
    *    D X X X X
    *    X X X X X
    *    X X X X P
    *
    *    从D(1,1)走到P
    * */
    * 
    /*
    * 思路
    *      i-1,j  向下   i,j-1 向右 为状态转移方程
    * */

k1 l1 dp[0][1]+d[1][0] =1+1 = dp[1][1] = 2
k1 l2 02 + 11 = __ 02 应该是2步走到的 所以边界条件都需要设定初始值 like dp[0][index] dp[index][0]
k1 l3 03 + 12 = __

   public static int DP03(int i,int j){
   	int[][] dp = new int[i][j];
   	dp[0][0] = 0;
   	//        初始化边界
   	for(int k = 0; k < i; k++) {
            dp[0][k] = 1;
        }
    for (int k = 0; k < i; k++) {
            dp[k][0] = 1;
        }

   	for (int k = 1; k <= i; k++){
            for (int l = 1; l <= j; l++) {
                dp[k][l] =  dp[k-1][l]+dp[k][l-1];
            }
        }
    return dp[i][j];

}

小青蛙跳台阶

一只青蛙一次可以跳上1级台阶,也可以跳上2级,求该青蛙跳上一个n级的台阶共有多少种跳法

递归与分治策略

递归算法


DP思想

先找状态方程:
f(n) : 调到n处的跳法种数
f(n) = f(n-1) +f(n-2)

public int PD04(int n){
	int[] dp = new int[n]; 
	if(n<=2) return n;
	else{
		if(dp[n]!=0) return dp[n-1]+dp[n-2];
	   return dp[n];
	}
}


最长子序列

https://blog.csdn.net/hrn1216/article/details/51534607
https://blog.csdn.net/weixin_34476847/article/details/114030706

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值