二进制枚举
主要运用在求某一集合的所有子集这一算法中,利用二进制只有1和0的特点去代表取和不取两种状态。
for(int i=0;i<1<<n;i++){//枚举每一种状态
for(int j=0;j<n;j++){//枚举当前状态下二进制的每一位
if(i&(1<<j))//或 if(i>>j&1),判断i的二进制数从右数第j+1位是否为1
...
}
}
__builtin_popcount(i)//该函数返回i的二进制中1的个数
题目:
现有一个质数集合{3, 5, 7, 11, 13, 19, 23, 29, 31, 37, 41, 53, 59, 61, 67, 71, 97, 101, 127, 197, 211, 431},你可以从中挑出任意多个(0-12个)不同的数出来相加构成一个新数。构成的新数从小到大依次为:0, 3, 5, 7, 8, 10, 11, 12, 13…,求[0,1694]中有多少个数是没法构成的。(例如:1,2,4…均是不能够从质数集合中挑数相加构成)
做法①:二进制枚举
22个数,挑0~12个出来的和构成一个新的数,每个数只有取或者不取。这种问题其实就是从22个数的全集中枚举元素个数小于等于12的子集。
对于这种只有取和不取两种状态的问题,很明显可以使用二进制枚举。
#include<bits/stdc++.h>
using namespace std;
int a[22]={3,5,7,11,13,19,23,29,31,37,41,53,59,61,67,71,97,101,127,197,211,431};
unordered_map<int,int>flag;
int main()
{
for(int i=0;i<1<<22;i++){
int ret=0;
if(__builtin_popcount(i)>12)continue;
for(int j=0;j<22;j++)
if(i&(1<<j))ret+=a[j];
flag[ret]=1;
}
int ans=0;
for(int i=0;i<=1694;i++)!flag[i]&&ans++;
cout<<ans<<endl;
return 0;
}
做法②:dfs
这道题当然也可以用dfs得到答案,但相较二进制枚举时间复杂度更高可能会超时。dfs做法是相当于22个数取12个数的组合问题。
#include<bits/stdc++.h>
using namespace std;
unordered_map<int,int>m,book;
int a[22]={3,5,7,11,13,19,23,29,31,37,41,53,59,61,67,71,97,101,127,197,211,431},num=12;
void dfs(int n,int k,int last)//三个参数分别为:取的数的和,取的数的个数,最后取的数
{
if(!m[n])m[n]=1;
if(k==num)return;
for(int i=0;i<22;i++){
if(!book[a[i]]&&a[i]>last){ //a[i]>last解决出现重复组合的情况
book[a[i]]=1;
dfs(n+a[i],k+1,a[i]);
book[a[i]]=0;
}
}
return;
}
int main()
{
dfs(0,0,0);
int ans=0;
for(int i=0;i<=1694;i++)!m[i]&&ans++;
cout<<ans<<endl;
return 0;
}