枚举子集:二进制枚举

二进制枚举

主要运用在求某一集合的所有子集这一算法中,利用二进制只有1和0的特点去代表取和不取两种状态。

for(int i=0;i<1<<n;i++){//枚举每一种状态
	for(int j=0;j<n;j++){//枚举当前状态下二进制的每一位
		if(i&(1<<j))//或 if(i>>j&1),判断i的二进制数从右数第j+1位是否为1
			...	
	}
}

__builtin_popcount(i)//该函数返回i的二进制中1的个数

题目:

现有一个质数集合{3, 5, 7, 11, 13, 19, 23, 29, 31, 37, 41, 53, 59, 61, 67, 71, 97, 101, 127, 197, 211, 431},你可以从中挑出任意多个(0-12个)不同的数出来相加构成一个新数。构成的新数从小到大依次为:0, 3, 5, 7, 8, 10, 11, 12, 13…,求[0,1694]中有多少个数是没法构成的。(例如:1,2,4…均是不能够从质数集合中挑数相加构成)

做法①:二进制枚举

22个数,挑0~12个出来的和构成一个新的数,每个数只有取或者不取。这种问题其实就是从22个数的全集中枚举元素个数小于等于12的子集。

对于这种只有取和不取两种状态的问题,很明显可以使用二进制枚举。

#include<bits/stdc++.h>
using namespace std;
int a[22]={3,5,7,11,13,19,23,29,31,37,41,53,59,61,67,71,97,101,127,197,211,431};
unordered_map<int,int>flag;
int main()
{
    for(int i=0;i<1<<22;i++){
        int ret=0;
        if(__builtin_popcount(i)>12)continue;
        for(int j=0;j<22;j++)
            if(i&(1<<j))ret+=a[j];
        flag[ret]=1;
    }
    int ans=0;
    for(int i=0;i<=1694;i++)!flag[i]&&ans++;
    cout<<ans<<endl;
    return 0;
}

做法②:dfs

这道题当然也可以用dfs得到答案,但相较二进制枚举时间复杂度更高可能会超时。dfs做法是相当于22个数取12个数的组合问题。

#include<bits/stdc++.h>
using namespace std;
unordered_map<int,int>m,book;
int a[22]={3,5,7,11,13,19,23,29,31,37,41,53,59,61,67,71,97,101,127,197,211,431},num=12;
void dfs(int n,int k,int last)//三个参数分别为:取的数的和,取的数的个数,最后取的数
{
    if(!m[n])m[n]=1;
    if(k==num)return;
    for(int i=0;i<22;i++){
        if(!book[a[i]]&&a[i]>last){ //a[i]>last解决出现重复组合的情况
            book[a[i]]=1;
            dfs(n+a[i],k+1,a[i]);
            book[a[i]]=0;
        }
    }
    return;
}
int main()
{
    dfs(0,0,0);
    int ans=0;
    for(int i=0;i<=1694;i++)!m[i]&&ans++;
    cout<<ans<<endl;
    return 0;
}
常用的集合运算包括交、并、补、判断元素是否存在、增加/删除元素以及枚举。 - 交:给定两个集合A和B,交是指同时属于A和B的元素组成的集合。可以用符号∩表示。例如,对于集合A={1,2,3}和集合B={2,3,4},它们的交为A∩B={2,3}。 - 并:给定两个集合A和B,并是指属于A或B的元素组成的集合。可以用符号∪表示。例如,对于集合A={1,2,3}和集合B={2,3,4},它们的并为A∪B={1,2,3,4}。 - 补:给定一个集合A和全U,补是指不属于A但属于U的元素组成的集合。可以用符号A'或者A^c表示。例如,对于集合A={1,2,3}和全U={1,2,3,4,5},它们的补为A'={4,5}。 - 判断元素是否存在:给定一个集合A和一个元素x,判断x是否属于A。如果x属于A,则返回真;否则返回假。 - 增加/删除元素:给定一个集合A,可以通过添加或删除元素来改变集合A的内容。添加元素可以使用集合的添加操作,删除元素可以使用集合的删除操作。 - 枚举:对于一个集合A,可以通过枚举A的所有子来获取A的所有可能的组合。可以使用二进制数来表示集合A的子,其中二进制数的每一位表示集合A中的每个元素是否在子中出现。通过枚举二进制数对应的子,可以求出该子中所有元素的和。 以上是常用的集合运算,可以根据具体的需求选择适当的运算来操作集合。 #### 引用[.reference_title] - *1* [位运算枚举模板](https://blog.csdn.net/weixin_45724872/article/details/123784061)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insert_down1,239^v3^insert_chatgpt"}} ] [.reference_item] - *2* *3* [二进制的应用——枚举](https://blog.csdn.net/AliceK1008/article/details/125326384)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insert_down1,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值