AtCoder - abc207_e

题目大意

给你一个数组A,你可以将这个数组分为很多小块,但是要满足每一个小块的每个元素的值的和要能被这个块的编号整除,最终你需要输出满足这样性质的划分有多少种。答案对1e9+7取模

基本思路

我们可以记录一个 dp[i][j] 数组,表示我们当前划分的是第 i 个块,其结束位置是 j ,那么很容易有一个暴力的转移方程
d p [ i ] [ j ] = ∑ k = 1 j − 1 d p [ i − 1 ] [ k ] , ( ( s u m [ j ] − s u m [ k ] ) m o d    i = = 0 ) dp[i][j]=\sum^{j-1}_{k=1}dp[i-1][k],((sum[j]-sum[k]) mod \;i ==0) dp[i][j]=k=1j1dp[i1][k],((sum[j]sum[k])modi==0)
显然,该状态转移方程的时间复杂度是 O ( n 3 ) O(n^3) O(n3),对于3000的数据来说是不能接受的

优化思路

上述式子中的
( s u m [ j ] − s u m [ k ] )    m o d    i = = 0 (sum[j]-sum[k])\;mod\;i ==0 (sum[j]sum[k])modi==0
其实可以化简为:
s u m [ k ]    m o d    i = = s u m [ j ]    m o d    i sum[k]\;mod\;i == sum[j]\;mod\;i sum[k]modi==sum[j]modi
那么自然就能使用一个桶来储存每一个余数出现的次数,每次通过访问这个桶来是实现状态的快速转移,时间复杂度为 O ( n 2 ) O(n^2) O(n2)
代码如下

#include <bits/stdc++.h>
using namespace std;
#define ll long long
int n;
ll a[3001], sum[3001], dp[3010][3010], t[3010];
const ll mod = 1e9 + 7;

int main()
{
    scanf("%d", &n);
    for (int i = 1; i <= n; i++)
    {
        scanf("%lld", &a[i]);
        sum[i] = sum[i - 1] + a[i];
    }
    for (int i = 1; i <= n; i++)
        dp[1][i] = 1;
    for (int i = 2; i <= n; i++)
    {
        memset(t, 0x0, sizeof(t));
        for (int j = 1; j <= n; j++)
        {
            dp[i][j] += t[sum[j] % i];
            t[sum[j] % i] += dp[i - 1][j];

            dp[i][j] %= mod;
            t[sum[j] % i] %= mod;
        }
    }

    ll ans = 0;
    for (int i = 1; i <= n; i++)
        ans += dp[i][n], ans %= mod;

    printf("%lld\n", ans);
    return 0;
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值