The n-queens puzzle is the problem of placing n queens on an n×n chessboard such that no two queens attack each other.
Given an integer n, return all distinct solutions to the n-queens puzzle.
Each solution contains a distinct board configuration of the n-queens' placement, where 'Q'
and '.'
both indicate a queen and an empty space respectively.
For example,
There exist two distinct solutions to the 4-queens puzzle:
[
[".Q..", // Solution 1
"...Q",
"Q...",
"..Q."],
["..Q.", // Solution 2
"Q...",
"...Q",
".Q.."]
]
Solution:
Code:
<span style="font-size:14px;">class Solution {
public:
void helper(vector<vector<string> > &results, vector<string> &result, vector<int> &positions, const int &n, int index) {
if (index == n) {
results.push_back(result);
return;
}
for (int i = 0; i < n; ++i) {
bool valid = true;
for (int j = 0; j < index; ++j)
if (positions[j] == i || abs(positions[j]-i) == abs(j-index)) {
valid = false;
break;
}
if (valid) {
positions[index] = i;
string s(n, '.');
s[i] = 'Q';
result.push_back(s);
helper(results, result, positions, n, index+1);
result.pop_back();
}
}
}
vector<vector<string> > solveNQueens(int n) {
vector<vector<string> > results;
vector<string> result;
vector<int> positions(n, -1);
helper(results, result, positions, n, 0);
return results;
}
};</span>