LeetCode-N-Queens

The n-queens puzzle is the problem of placing n queens on an n×n chessboard such that no two queens attack each other.

Given an integer n, return all distinct solutions to the n-queens puzzle.

Each solution contains a distinct board configuration of the n-queens' placement, where 'Q' and '.' both indicate a queen and an empty space respectively.

For example,
There exist two distinct solutions to the 4-queens puzzle:

[
 [".Q..",  // Solution 1
  "...Q",
  "Q...",
  "..Q."],

 ["..Q.",  // Solution 2
  "Q...",
  "...Q",
  ".Q.."]
]
Solution:

Code:

<span style="font-size:14px;">class Solution {
public:
    void helper(vector<vector<string> > &results, vector<string> &result, vector<int> &positions, const int &n, int index) {
        if (index == n) {
            results.push_back(result);
            return;
        }
        for (int i = 0; i < n; ++i) {
            bool valid = true;
            for (int j = 0; j < index; ++j)
                if (positions[j] == i || abs(positions[j]-i) == abs(j-index)) {
                    valid = false;
                    break;
                }
            if (valid) {
                positions[index] = i;
                string s(n, '.');
                s[i] = 'Q';
                result.push_back(s);
                helper(results, result, positions, n, index+1);
                result.pop_back();
            }
        }
    } 
    
    vector<vector<string> > solveNQueens(int n) {
        vector<vector<string> > results;
        vector<string> result;
        vector<int> positions(n, -1);
        helper(results, result, positions, n, 0);
        return results;
    }
};</span>



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值