- 博客(6)
- 收藏
- 关注
原创 模型压缩 | 结构性剪枝Data-Driven Sparse Structure Selection 以及实际剪枝实现流程
前言剪枝的文章文章很多,目前稀疏化的方法有主流的:group lasso; 控制网络结构收缩constrain the structure scale;对网络结构正则化处理regularizing multiple DNN structures。本文主要侧重于channel prune 乃至group/block等结构上稀疏化的方法。这里主要是基于图森的文章: Data-Driven Spar...
2018-09-10 17:07:20 4730 2
原创 CVPR2018 | 细粒度分类 : Learning a Discriminative Filter Bank within a CNN(DFL-CNN) 及tensorflow实现
摘要近期细分类模型都在其加强mid-level学习能力。先前达到此目的,1)通过一个辅助网络把局部信息加入到分类主网络,2)通过复杂的特征解码方法获取更高阶的特征统计。本文展示的方法可以在端到端内部加强mid-level学习能力,在无需额外辅助网络或者标注框情况下通过学习一行卷积核获取类别定性小块。这种卷积核行在卷积神经网络结构内部的,需要适当的非随机初始化,和非对称的多流网络结构。1. 前言...
2018-11-16 14:22:01 7291 16
原创 ECCV2018 | 细粒度分类:多注意力多类别约束 Multi-Attention Multi-Class Constraint for Fine-grained Image Recognition
细粒度分类就是对同一类中不同的子类物体间的分类。 如下图,是不同公开数据集下例子。不同种类的鸟、车、飞机。由于不同物体姿态,视角,光照,遮挡等影响,往往造成子类之间差异偏小,不同类别物体差异偏大。基于深度学习的物体分类可以大致分为强监督和弱监督两大类。强监督指图片标注中将物体某些显著特征(术语叫做discriminative判别性,可以区分类别的)部位信息给出,弱监督则没有此类信息。本文所述方法是弱监督细粒度分类。
2018-09-26 16:23:36 7035 4
原创 CVPR2018 | R(2+1)D结构:视频动作识别中的时空卷积深度探究
这篇文章 是C3D作者Du Tran+IDT作者Heng Wang新作。来自Facebook Resaerch &Dartmouth Colledge.阅读这篇文章之前,可以看一下对比文章《Learning Spatio-Temporal Representation with Pseudo-3D Residual Networks》。关于3维卷积,可以看一下文章《Learning Spa...
2018-06-10 17:19:26 16658 14
原创 CNN结构演变的亮点
LeNet和AlexNet就不再赘述了NIN网络中的feature map之间包含一个MLP网络,故名之。 mlpconv 传统卷积之后加一个MLP非线性结构,为线性卷积增加了非线性。另外也减少了参数量,利于网络深化。跨通道下,mlpconv相当于conv+1*1conv,文章中叫做cccp:cascaded cross channel parametric pooling.论文中图示如下
2018-04-04 11:48:38 442
原创 FCN进行人体分割
本文记录本人学习《Fully ConvolutionalNetworks For Semantic Segmentation》遇到问题及个人理解,并应用FCN进行人体分割。此处任务Tensorflow实现代码
2018-04-04 11:41:43 4058
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人