块(module类)
块的引入
对于多层感知机而言, 整个模型接受原始输入(特征),生成输出(预测),并包含一些参数(所有组成层的参数集合)。同样,每个单独的层接收输入(由前一层提供),生成输出(到下一层的输入),并且具有一组可调参数, 这些参数根据从下一层反向传播的信号进行更新。
事实证明,研究讨论“比单个层大”但“比整个模型小”的组件更有价值。
块的概念
为了实现这些复杂的网络,我们引入了神经网络块的概念。 块(block)可以描述单个层、由多个层组成的组件或整个模型本身。 使用块进行抽象的一个好处是可以将一些块组合成更大的组件。
如图所示,此前的层是块的一种实例。
对块的理解
块是一个模型构造的类,前面的Sequential类就是对Module类的继承。
和面向对象编程一样,我们可以自行构造类,来继承Module,并对其中函数进行重载
下面是几种对Module类进行继承和函数重载的实例。
自定义块
首先,了解一下自定义块的功能:
将输入数据作为其前向传播函数的参数。
通过前向传播函数来生成输出。
计算其输出关于输入的梯度,可通过其反向传播函数进行访问。通常这是自动发生的。
存储和访问前向传播计算所需的参数。
根据需要初始化模型参数。
而需要进行的操作大致如下:
对下面MPL自定义块继承Module块
重载Module类中的__init__函数,目的是声明带有模型参数的层,比如声明两个全连接层。__init__函数通过super().__init__() 调用父类的__init__函数
重载Module类中的forward函数,目的是定义前向计算(就是如何根据X计算返回模型所需输出。
import torch
from torch import nn
from torch.nn import functional as F
class MLP(nn.Module):
# 用模型参数声明层。这里,我们声明两个全连接的层
def __init__(self):
# 调用MLP的父类Module的构造函数来执行必要的初始化。
# 这样,在类实例化时也可以指定其他函数参数,例如模型参数params(稍后将介绍)
super().__init__()
self.hidden = nn.Linear(20, 256) # 隐藏层
self.out = nn.Linear(256, 10) # 输出层
# 定义模型的前向传播,即如何根据输入X返回所需的模型输出
def forward(self, X):
# 注意,这里我们使用ReLU的函数版本,其在nn.functional模块中定义。
return self.out(F.relu(self.hidden(X)))
#产生一个随机的输入X,X属性是tensor
X = torch.rand(2, 20)
net(X)
顺序块(Sequential类)
同理,为了构建MySequential, 操作方法是:
一种将块逐个追加到列表中的函数,
__init__函数将每个模块逐个添加到有序字典_modules中。_modules的功能是: 在模块的参数初始化过程中, 系统知道在_modules字典中查找需要初始化参数的子块。
一种前向传播函数,用于将输入按追加块的顺序传递给块组成的“链条”。
class MySequential(nn.Module):
def __init__(self, *args):
super().__init__()
for idx, module in enumerate(args):
# 这里,module是Module子类的一个实例。我们把它保存在'Module'类的成员
# 变量_modules中。_module的类型是OrderedDict
self._modules[str(idx)] = module
def forward(self, X):
# OrderedDict保证了按照成员添加的顺序遍历它们
for block in self._modules.values():
X = block(X)
return X
net = MySequential(nn.Linear(20, 256), nn.ReLU(), nn.Linear(256, 10))
net(X)
在前向传播函数中执行代码
当需要更强的灵活性时,需要定义自己的块。 例如,在前向传播函数中执行Python的控制流。 此外,我们可能希望执行任意的数学运算, 而不是简单地依赖预定义的神经网络层。
有时我们可能希望合并既不是上一层的结果也不是可更新参数的项,称之为常数参数(constant parameter)。例如,需要一个计算函数 𝑓(𝐱,𝐰)=𝑐⋅𝐰⊤𝐱f(x,w)=c⋅w⊤x的层, 其中𝐱是输入, 𝐰是参数, 𝑐是某个在优化过程中没有更新的指定常量。 如下所示:
class FixedHiddenMLP(nn.Module):
def __init__(self):
super().__init__()
# 不计算梯度的随机权重参数。因此其在训练期间保持不变
self.rand_weight = torch.rand((20, 20), requires_grad=False)
self.linear = nn.Linear(20, 20)
def forward(self, X):
X = self.linear(X)
# 使用创建的常量参数以及relu和mm函数
X = F.relu(torch.mm(X, self.rand_weight) + 1)
# 复用全连接层。这相当于两个全连接层共享参数
X = self.linear(X)
# 控制流
while X.abs().sum() > 1:
X /= 2
return X.sum()
net = FixedHiddenMLP()
net(X)
其中自定义的self.weight权重不会反向传播而更新
组合块
class NestMLP(nn.Module):
def __init__(self):
super().__init__()
self.net = nn.Sequential(nn.Linear(20, 64), nn.ReLU(),
nn.Linear(64, 32), nn.ReLU())
self.linear = nn.Linear(32, 16)
def forward(self, X):
return self.linear(self.net(X))
chimera = nn.Sequential(NestMLP(), nn.Linear(16, 20), FixedHiddenMLP())
chimera(X)
小结
一个块可以由许多层组成;一个块可以由许多块组成。
块可以包含代码。
块负责大量的内部处理,包括参数初始化和反向传播。
层和块的顺序连接由Sequential块处理。