七深度学习计算-模型构建(3月4日学习笔记)

文章介绍了PyTorch中块(Block)的概念,包括它是如何作为模型构造的类,允许用户自定义复杂网络结构。块可以是单个层、多个层的组合或者整个模型。通过继承Module类,可以创建自定义块,定义自己的前向传播函数。Sequential类用于顺序连接多个块。文章还展示了如何在前向传播中执行控制流和使用常量参数。最后,文章提到了块的组合和内部处理,如参数初始化和反向传播。
摘要由CSDN通过智能技术生成

块(module类)

块的引入

对于多层感知机而言, 整个模型接受原始输入(特征),生成输出(预测),并包含一些参数(所有组成层的参数集合)。同样,每个单独的层接收输入(由前一层提供),生成输出(到下一层的输入),并且具有一组可调参数, 这些参数根据从下一层反向传播的信号进行更新。

事实证明,研究讨论“比单个层大”但“比整个模型小”的组件更有价值。

块的概念

为了实现这些复杂的网络,我们引入了神经网络的概念。 (block)可以描述单个层、由多个层组成的组件或整个模型本身。 使用块进行抽象的一个好处是可以将一些块组合成更大的组件。

如图所示,此前的层是块的一种实例。

对块的理解

  1. 块是一个模型构造的类,前面的Sequential类就是对Module类的继承。

  1. 和面向对象编程一样,我们可以自行构造类,来继承Module,并对其中函数进行重载

下面是几种对Module类进行继承和函数重载的实例。

自定义块

首先,了解一下自定义块的功能:

  1. 将输入数据作为其前向传播函数的参数。

  1. 通过前向传播函数来生成输出。

  1. 计算其输出关于输入的梯度,可通过其反向传播函数进行访问。通常这是自动发生的。

  1. 存储和访问前向传播计算所需的参数。

  1. 根据需要初始化模型参数。

而需要进行的操作大致如下:

  1. 对下面MPL自定义块继承Module块

  1. 重载Module类中的__init__函数,目的是声明带有模型参数的层,比如声明两个全连接层。__init__函数通过super().__init__() 调用父类的__init__函数

  1. 重载Module类中的forward函数,目的是定义前向计算(就是如何根据X计算返回模型所需输出。

import torch
from torch import nn
from torch.nn import functional as F

class MLP(nn.Module):
    # 用模型参数声明层。这里,我们声明两个全连接的层
    def __init__(self):
        # 调用MLP的父类Module的构造函数来执行必要的初始化。
        # 这样,在类实例化时也可以指定其他函数参数,例如模型参数params(稍后将介绍)
        super().__init__()
        self.hidden = nn.Linear(20, 256)  # 隐藏层
        self.out = nn.Linear(256, 10)  # 输出层

    # 定义模型的前向传播,即如何根据输入X返回所需的模型输出
    def forward(self, X):
        # 注意,这里我们使用ReLU的函数版本,其在nn.functional模块中定义。
        return self.out(F.relu(self.hidden(X)))

#产生一个随机的输入X,X属性是tensor
X = torch.rand(2, 20)
net(X)

顺序块(Sequential类)

同理,为了构建MySequential, 操作方法是:

  1. 一种将块逐个追加到列表中的函数,

__init__函数将每个模块逐个添加到有序字典_modules中。_modules的功能是: 在模块的参数初始化过程中, 系统知道在_modules字典中查找需要初始化参数的子块。

  1. 一种前向传播函数,用于将输入按追加块的顺序传递给块组成的“链条”。

class MySequential(nn.Module):
    def __init__(self, *args):
        super().__init__()
        for idx, module in enumerate(args):
            # 这里,module是Module子类的一个实例。我们把它保存在'Module'类的成员
            # 变量_modules中。_module的类型是OrderedDict
            self._modules[str(idx)] = module

    def forward(self, X):
        # OrderedDict保证了按照成员添加的顺序遍历它们
        for block in self._modules.values():
            X = block(X)
        return X

net = MySequential(nn.Linear(20, 256), nn.ReLU(), nn.Linear(256, 10))
net(X)

在前向传播函数中执行代码

当需要更强的灵活性时,需要定义自己的块。 例如,在前向传播函数中执行Python的控制流。 此外,我们可能希望执行任意的数学运算, 而不是简单地依赖预定义的神经网络层。

有时我们可能希望合并既不是上一层的结果也不是可更新参数的项,称之为常数参数(constant parameter)。例如,需要一个计算函数 𝑓(𝐱,𝐰)=𝑐⋅𝐰⊤𝐱f(x,w)=c⋅w⊤x的层, 其中𝐱是输入, 𝐰是参数, 𝑐是某个在优化过程中没有更新的指定常量。 如下所示:

class FixedHiddenMLP(nn.Module):
    def __init__(self):
        super().__init__()
        # 不计算梯度的随机权重参数。因此其在训练期间保持不变
        self.rand_weight = torch.rand((20, 20), requires_grad=False)
        self.linear = nn.Linear(20, 20)

    def forward(self, X):
        X = self.linear(X)
        # 使用创建的常量参数以及relu和mm函数
        X = F.relu(torch.mm(X, self.rand_weight) + 1)
        # 复用全连接层。这相当于两个全连接层共享参数
        X = self.linear(X)
        # 控制流
        while X.abs().sum() > 1:
            X /= 2
        return X.sum()

net = FixedHiddenMLP()
net(X)

其中自定义的self.weight权重不会反向传播而更新

组合块

class NestMLP(nn.Module):
    def __init__(self):
        super().__init__()
        self.net = nn.Sequential(nn.Linear(20, 64), nn.ReLU(),
                                 nn.Linear(64, 32), nn.ReLU())
        self.linear = nn.Linear(32, 16)

    def forward(self, X):
        return self.linear(self.net(X))

chimera = nn.Sequential(NestMLP(), nn.Linear(16, 20), FixedHiddenMLP())
chimera(X)

小结

  • 一个块可以由许多层组成;一个块可以由许多块组成。

  • 块可以包含代码。

  • 块负责大量的内部处理,包括参数初始化和反向传播。

  • 层和块的顺序连接由Sequential块处理。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小常在学习

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值