解决笔记本电脑电源显示0%,电源连接,正在充电但不充电

前两天遇到的问题,前一天刚用过电脑还好好的,第二天打开显示电量低,然后自动关机了,再打开发现电量一直为0,插上电源还是0,显示正在充电但是一直充不进去电.
不说了先上图:
在这里插入图片描述
反正我显示的是这样,then充了半天点还是这样,没动!!
最后,我又下载了联想管家(对的,我的电脑是联想的,因为用不惯就直接卸载了)然后扫描了一下硬件看到电池显示

然后不知道怎么搞,突然我看到状态栏有个电池的东西就好奇点了一下
在这里插入图片描述
(这个是在管家的工具箱里面极速模式开启的,上图把)
在这里插入图片描述
在这里插入图片描述
看到没有个快充我就点了一下,等了没多久就奇迹般的显示1%,仿佛黑暗中看到了光亮在这里插入图片描述
我大概等了两三分钟他冲进去电了
在这里插入图片描述
最后:
当然也不排除是电池老化问题;能拿电池的把电池拿掉再放上试试,像我这样在里面的电池拆不下来就让人头疼.

### 大模型对齐微调DPO方法详解 #### DPO简介 直接偏好优化(Direct Preference Optimization, DPO)是一种用于改进大型语言模型行为的技术,该技术通过结合奖励模型训练和强化学习来提升训练效率与稳定性[^1]。 #### 实现机制 DPO的核心在于它能够依据人类反馈调整模型输出的概率分布。具体来说,当给定一对候选响应时,DPO试图使更受偏好的那个选项具有更高的生成概率。这种方法仅简化了传统强化学习所需的复杂环境设置,而且显著增强了模型对于多样化指令的理解能力和执行精度[^2]。 #### PAI平台上的实践指南 为了便于开发者实施这一先进理念,在PAI-QuickStart框架下提供了详尽的操作手册。这份文档覆盖了从环境配置直至完成整个微调流程所需的一切细节,包括但限于数据准备、参数设定以及性能评估等方面的内容。尤其值得注意的是,针对阿里云最新发布的开源LLM——Qwen2系列,文中给出了具体的实例说明,使得即使是初次接触此类工作的用户也能顺利上手。 ```python from transformers import AutoModelForCausalLM, Trainer, TrainingArguments model_name_or_path = "qwen-model-name" tokenizer_name = model_name_or_path training_args = TrainingArguments( output_dir="./results", per_device_train_batch_size=8, num_train_epochs=3, ) trainer = Trainer( model_init=lambda: AutoModelForCausalLM.from_pretrained(model_name_or_path), args=training_args, train_dataset=train_dataset, ) # 假设已经定义好了train_dataset trainer.train() ``` 这段代码片段展示了如何使用Hugging Face库加载预训练模型并对其进行微调的过程。虽然这里展示的例子并完全对应于DPO的具体实现方式,但它提供了一个基础模板供进一步定制化开发之用[^3]。
评论 30
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值