区间覆盖问题
Time Limit: 1000 ms Memory Limit: 65536 KiB
Problem Description
设x1 , x2 ,…… , xn 是实直线上的n 个点。用固定长度的闭区间覆盖这n 个点,至少需要多少个这样的固定长度闭区间?
对于给定的实直线上的n个点和闭区间的长度k,设计解此问题的有效算法,计算覆盖点集的最少区间数,并证明算法的正确性。
Input
输入数据的第一行有2 个正整数n和k(n≤10000,k≤100),表示有n个点,且固定长度闭区间的长度为k。接下来的1 行中,有n个整数,表示n个点在实直线上的坐标(可能相同)。
Output
输出一个整数,表示计算出的最少区间数输出。
Sample Input
7 3 1 2 3 4 5 -2 6
Sample Output
3
Hint
#include<iostream>
#include<algorithm>
#include<math.h>
#include<vector>
#include<string>
using namespace std;
bool cmp(int x, int y)
{
return x > y;
}
int main() {
int n, k;
cin >> n >> k;
int s[10005];
for (int i = 0; i < n; i++) {
cin >> s[i];
}
sort(s, s + n); //坐标进行排序
int t = s[0]; //记录第一个点的坐标
int sum = 1;
for (int i = 0; i < n; i++) {
if (s[i] > t + k) { //看从t开始加上一个区间覆盖的长度能不能到达下一个坐标
sum++;
t = s[i];
}
}
cout << sum << endl;
return 0;
}