整数变换问题
Time Limit: 1000 ms Memory Limit: 65536 KiB
Problem Description
整数变换问题。关于整数i的变换f和g定义如下:f(i)=3i;
试设计一个算法,对于给定的2 个整数n和m,用最少的f和g变换次数将n变换为m。例如,可以将整数15用4 次变换将它变换为整数4:4=gfgg(15)。当整数n不可能变换为整数m时,算法应如何处理?
对任意给定的整数n和m,计算将整数n变换为整数m所需要的最少变换次数。
Input
输入数据的第一行有2 个正整数n和m。n≤100000,m≤1000000000。
Output
将计算出的最少变换次数以及相应的变换序列输出。第一行是最少变换次数。第2 行是相应的变换序列。
Sample Input
15 4
Sample Output
4 gfgg
#include <iostream>
#include <vector>
using namespace std;
vector<char> a;
int k;
int select(int n, int i) {
if (i == 0) {
return 3 * n;
}
else {
return n / 2;
}
}
bool dfs(int step, int n, int m) {
int num;
if (step > k) {
return false;
}
num = n;
for (int i = 0; i < 2; i++) {
num = select(n, i);
if (num == m || dfs(step + 1, num, m)) {
if (i == 0) {
a.push_back('f');
}
else {
a.push_back('g');
}
return true;
}
}
return false;
}
int main() {
int n, m;
cin >> n >> m;
k = 1;
while (!dfs(1, n, m)) {
k++;
}
cout << k << endl;
for (int i = 0; i < a.size(); i++) {
cout << a[i];
}
cout << endl;
return 0;
}