数据重构之聚合运算

本文详细介绍了Python数据分析中的groupby()和agg()方法。通过具体任务,如计算男女平均票价、统计存活人数及多列操作,阐述了分组操作的使用说明和应用场景。强调了理解分组依据、数据来源和操作的重要性。
摘要由CSDN通过智能技术生成

如有错误欢迎指正~


一、groupby()

1. 使用说明

想要实现分组操作,必须明确三个要素: 分 组 依 据 \color{#FF0000}{分组依据} 数 据 来 源 \color{green}{数据来源} 操 作 及 其 返 回 结 果 \color{#0000FF}{操作及其返回结果} 。同时从充分性的角度来说,如果明确了这三方面,就能确定一个分组操作,从而分组代码的一般模式即:

df.groupby(分组依据)[数据来源].使用操作
或
df[数据来源].groupby(df[分组依据]).使用操作

2. 举个例子:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值