Matrices 矩阵
m * n 意思是m 行 n 列矩阵
An m * n matrix is a rectangular array of numbers with m rows and n columns.
行向量和列向量(单行/单列矩阵)
Sometimes a matrix will contain a single row or column. We give the special names row vector and column vector to describe such matrices.
矩阵乘
AB = A的行向量分别乘B的列向量(这里的乘就是点积)
Cij = Ai * Bj ,要使得这个点积有意义,Ai 这个行向量的列数要等于Bj 这个列向量的列数,既A 的列数必须等于B 的行数。
显然,C 的行数和A 一样,而列数和B 一样。
单位矩阵是一个方阵,除主对角线上元素为1,其余元素均为0。
M I = I M = M (这是矩阵乘法中可交换的特例)
单位矩阵可认为是矩阵乘法中的“1”
Inverses 逆矩阵
一个矩阵和其逆矩阵相乘,结果是一个方阵。
只有方阵才可能有逆矩阵。
不是所有方阵都有逆矩阵。
矩阵的转置
就是第一 行变为第一列,第二列变为第二列 …
Aij = Aji
D3DX 矩阵
Direct3D 程序中,通常只使用4*4 矩阵和1*4 向量
扩展后的4D 向量称为“齐次向量”。
要将齐次向量(X,Y,Z,W)映射到3D空间的方法是,每一个分量都分别除以W