- 博客(6)
- 资源 (5)
- 收藏
- 关注
原创 FRUIT QUALITY AND DEFECT IMAGE CLASSIFICATION WITH CONDITIONAL GAN DATA AUGMENTATION
这篇文章主要解决的是柠檬好坏的图像分类任务,首先用VGG16网络对柠檬图像进行分类,探索了表示层神经元数量对分类结果的影响。然后提出了使用CGAN对柠檬分类数据集进行扩增,可以给定类别生成好的和坏的柠檬图像,并通过实验探索不同数量的扩增图像对分类结果的影响。最后对VGG16进行不同比例的剪枝实验,加速网络的推理速度。
2022-11-21 10:25:07 374 1
翻译 Dual Cross-Attention Learning for Fine-Grained Visual Categorization and Object Re-Identification
自我注意力机制能够捕获序列特征和全局信息,被广泛应用于各种NLP和CV任务中,并提高了其性能。本工作致力于研究若何将自我注意力机制进行扩展以更好地在识别细粒度物体(如不同种类的鸟或人的身份识别)时更好地对微妙的嵌入特征进行学习。为此,我们提出了与自我注意力学习相配合的双交叉注意力学习(DCAL)算法。首先,我们提出了全局-局部交叉注意力来促进全局图像和局部高响应图像区域之间的信息交互,这有助于加强空间上的识别线索。其次,我们提出了逐对交叉注意力(PWCA)来建立图像对之间的交互。
2022-11-14 14:58:07 1558 3
原创 【A Unified Model for Multi-class Anomaly Detection, NeurIPS 2022】
以前的无监督异常检测方法对不同的物体需要训练不同的模型进行异常检测。针对这个问题,我们提出的UniAD为多类别异常检测提供了一个统一的架构。在这种具有挑战性的场景下,流行的重建网络会陷入”同等捷径“困境,所谓”同等捷径“即是无论是正常的还是异常的样本都会被很好地重建恢复,因此也就无法发现异常了。为了解决这个困境,我们做了三点改进。首先,我们重新审视了全连接层、卷积层以及注意层,并确认了query embedding(例如,注意层中的)在预防网络学习捷径的关键作用。
2022-10-25 10:05:25 2902
原创 Improving unsupervised defect segmentation by applying structural similarity to autoencoders
Improving unsupervised defect segmentation by applying structural similarity to autoencodersAbstract1. Introduction2. Related Work3. Methodology3.1. Autoencoders for Unsupervised Defect Segmentation3.1.1. l2l^2l2-Autoencoder3.1.2. Variational Autoencoder3.
2022-04-27 15:29:57 931
转载 【mmdetection】
mmdetection使用文档1. 安装[^1]1.1 准备环境1.2 安装MMDetection1.3 安装验证2. 整体构建流程(一)[^2]2.1 摘要2.2 目标检测算法抽象流程2.3 MMDetection整体构建流程和思想2.3.1 训练核心组件2.3.1.1Backbone2.3.1.2 Neck2.3.1.3 Head2.3.1.4 Enhance2.3.1.5 BBox Assigner2.3.1.6 BBox Sampler2.3.1.7 BBox Encoder2.3.1.8 Loss
2021-12-14 17:25:27 1987
东北大学模式识别课程PPT
2018-11-05
matlab语言与科学运算课件-薛定宇
2018-10-06
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人