逻辑回归公式推导

这篇博客专注于逻辑回归公式的推导,而非损失函数。逻辑回归利用线性分割面对2分类问题进行处理,并可扩展到多分类。遵循贝叶斯法则,找到样本最可能的类别。通过取对数和线性化,得出分类边界方程,最终得到逻辑回归的sigmoid形式。
摘要由CSDN通过智能技术生成

这两天学习逻辑回归模型,看了很多博客、知乎。很多人虽然标题写着“逻辑回归公式推导”,可是内容明明写的却是“逻辑回归损失函数的推导”,“逻辑回归公式”的推导都是直接给出公式。。。看得我很懵啊。

直到在知乎上找到这个https://zhuanlan.zhihu.com/p/36985192,大佬牛逼。

这里只写逻辑回归公式的推导,不写损失函数的推导,这个推导的偏导数确实很难。

正文:

逻辑回归其实是以某个线性分割面来分割各个类别的,2分类是逻辑回归本质解决的问题,由2分类可以推广到多分类(one vs last)

逻辑回归服从贝叶斯法则,即它对样本的分类是看样本对哪个类别后验概率最大:

\widehat{G}\left ( x \right )=argmax(P(G=k|X=x))

其中,P(G=k|X=x)表示给定x,分类为类别k的概率。

那么对于类别i,j,他们之间的分割面方程为:

P(G=i|X=x)=P(G=j|X=x)

取对数

\ln P(G=i|X=x)=\ln P(G=j|X=x)

分割面方程==>

\ln P(G=i|X=x)/P(G=j|X=x)=0

由于在逻辑回归中,分割面是线性的,令

\ln P(G=i|X=x)/P(G=j|X=x)=WX       (1)   

在二分类中,有

1 - P(G=i|X=x) = P(G=j|X=x)

带入(1)中,有

\ln P(G=i|X=x)/(1-P(G=i|X=x))=WX

==>

P_{i}/(1-P_{i})=exp(WX)

==>

P_{i}=1/(1+exp(-WX))

推导完毕。

 

 

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值