1【算法】——最大子数组问题(maximum subarray)

本文讲述了如何在包含正负数的数组中找到具有最大和的连续子数组。通过分治法的递归实现和动态规划的方法,提供了C++代码示例,展示了两种求解最大子数组问题的不同策略。
摘要由CSDN通过智能技术生成

一.问题描述

        假如我们有一个数组,数组中的元素有正数和负数,如何在数组中找到一段连续的子数组,使得子数组各个元素之和最大。

二.问题分析

分治法求解:

初始状态:

low=0;high=A.length-1;mid=(low+high)/2;

求解A的最大子数组,A[i,j],有以下三种情况:

  1. 完全位于A[low,mid]
  2. 完全位于A[mid+1,high]
  3. 跨越中点

1与2仍为最大子数组问题,只是规模更小

对于3,任何跨越中点的子数组都由两个子数组组成A[i,mid],A[mid+1,j]

只需要找到A[low,mid]和A[mid+1,high]的最大子数组,然后进行合并即可。

代码实现:

#include<iostream>

using namespace std;

int find_max_crossing_subarray(int arr[],int low,int high){
    if(high==low){
        return arr[low];
    }
    
    int mid=(low+high)/2;
    int left=-1,right=-1,i,sum=0,max_left,max_right;
    
    for(i=mid;i>=low;i--){
        sum+=arr[i];
        if(sum>left){
            left=sum;
            max_left=i;
        }
    }
    
    sum=0;
    for(i=mid+1;i<=high;i++){
        sum+=arr[i];
        if(sum>right){
            right=sum;
            max_right=i;
        }
    }
    
    return left+right;
}
int max(int a,int b,int c){
    if(a>=b&&a>=c){
        return a;
    }
    else if(b>=a&&b>=c){
        return b;
    }
    else{
        return c;
    }
}
int find_max_subarray(int arr[],int low,int high){
    if(high==low){
        return arr[low];
    }
    
    int mid=(low+high)/2;
    int left=find_max_subarray(arr, low, mid);
    int right=find_max_subarray(arr, mid+1, high);
    int m=find_max_crossing_subarray(arr, low, high);
    return max(left,right,m);
}

int main(){
    int arr[] = {5, 4, -17, 7, 8};
    cout<<find_max_subarray(arr, 0, 4);
    return 0;
}

动态规划求解:

对于一个有n个元素的数组arr[n]:

记maxSum(n)为该数组前n个元素和的最大值

p(n)为前n个元素中以第n元素结尾的最大子数组和

则有:

maxSum(n)=max\{p(n),maxSum(n-1)\}

p(n)=max\{p(n-1)+arr[n],arr[n]\}

int find_max_subarray_dp(int arr[],int low,int high){
    if(high==low){
        return arr[low];
    }
    int p[100],maxsum[100];
    p[0]=arr[0];
    maxsum[0]=arr[0];
    
    for(int i=1;i<=high;i++){
        if(arr[i]>(arr[i]+p[i-1])){
            p[i]=arr[i];
        }
        else{
            p[i]=arr[i]+p[i-1];
        }
    }
    
    for(int i=1;i<=high;i++){
        if(p[i]>maxsum[i-1]){
            maxsum[i]=p[i];
        }
        else{
            maxsum[i]=maxsum[i-1];
        }
    }
    return maxsum[high];
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值