1.问题描述:
小明最近在教邻居家的小朋友小学奥数,而最近正好讲述到了三阶幻方这个部分,
三阶幻方指的是将1~9不重复的填入一个3*3的矩阵当中,使得每一行、每一列和每一条对角线的和都是相同的。
三阶幻方又被称作九宫格,在小学奥数里有一句非常有名的口诀:
“二四为肩,六八为足,左三右七,戴九履一,五居其中”,
通过这样的一句口诀就能够非常完美的构造出一个九宫格来。
4 9 2
3 5 7
8 1 6
有意思的是,所有的三阶幻方,都可以通过这样一个九宫格进行若干镜像和旋转操作之后得到。
现在小明准备将一个三阶幻方(不一定是上图中的那个)中的一些数抹掉,交给邻居家的小朋友来进行还原,
并且希望她能够判断出究竟是不是只有一个解。
而你呢,也被小明交付了同样的任务,但是不同的是,你需要写一个程序
2.输入格式:
输入仅包含单组测试数据。
每组测试数据为一个3*3的矩阵,其中为0的部分表示被小明抹去的部分。
对于100%的数据,满足给出的矩阵至少能还原出一组可行的三阶幻方。
3.输出格式:
如果仅能还原出一组可行的三阶幻方,则将其输出,否则输出“Too Many”(不包含引号)。
4.问题分析:
列举一些数字所有排列方式的情况。
next_permutation函数在头文件<algorithm>中,作用是是生成给定序列的下一个较大排序,直到序列按降序排列为止。
如果你希望生成所有的排列方式,一定要先将序列按升序排列,这里可以与sort函数结合起来使用,先用sort升序排列,再调用next_permutation函数。
//三阶幻方
#include <iostream>
#include <algorithm>
using namespace std;
int x[9],ans=0,c[9]={0};
int s[9]={1,2,3,4,5,6,7,8,9};
bool judge(int a[]){
int a1=a[0]+a[1]+a[2];
int a2=a[3]+a[4]+a[5];
int a3=a[6]+a[7]+a[8];
int a4=a[0]+a[3]+a[6];
int a5=a[1]+a[4]+a[7];
int a6=a[2]+a[5]+a[8];
int a7=a[0]+a[4]+a[8];
int a8=a[2]+a[4]+a[6];
if(a1==a2 && a2==a3 && a3==a4 && a4==a5 && a5==a6 && a6==a7 && a7==a8)
return true;
else
return false;
}
int main(int argc, const char * argv[]) {
ios::sync_with_stdio(0);cin.tie(0);cout.tie(0);
for(int i=0;i<9;i++)
cin>>x[i];
do{
if(judge(s)){
bool flag=true;
for(int i=0;i<9;i++){
if(x[i]&&(x[i]!=s[i])){
flag=false;
break;
}
}
if(flag){
ans++;
for(int i=0;i<9;i++)
c[i]=s[i];
}
}
}while(next_permutation(s, s+9));
if(ans==1){
for(int i=0;i<9;i++){
cout<<c[i]<<' ';
if((i+1)%3==0)
cout<<'\n';
}
}
else if(ans>1)
cout<<"Too Many"<<'\n';
return 0;
}