题目要求:
给你一根长度为 n 的绳子,请把绳子剪成整数长度的 m 段(m、n都是整数,n>1并且m>1),每段绳子的长度记为 k[0],k[1]…k[m] 。请问 k[0]k[1]…*k[m] 可能的最大乘积是多少?例如,当绳子的长度是8时,我们把它剪成长度分别为2、3、3的三段,此时得到的最大乘积是18。
解题思路:
动态规划条件:
1.大问题分解小问题,小问题也存在最优解
2.小问题之间有相互重叠的更小子问题,所以要数组存储每次小问题计算的结果
3.从上往下分析问题,但是从下往上计算,把子问题的最优解组合起来解决大问题
解题步骤:
所以使用动态规划,因为设f(n)为当绳子长度为n时的最优解乘积,当剪第一刀时候,剪在长度为i的位置,共n-1种选择。所以得到自上而下的递归公式
f(n)=max(f(i)*f(n-i)) 0<i<n
class Solution {
public int cuttingRope(int n) {
if(n<=0){return 0;}//题目规定了m>1,所以长度0或1的绳子无法剪
if(n==1){return 1;}
if(n==2){return 1;}
if(n==3){return 2;}
int products[]=new int[n+1];
products[0]=0;
products[1]=1;
products[2]=2;
products[3]=3;//因为当长度为3的绳子不剪,比任何剪法都要长
for(int i=4;i<=n;i++){
int max=0;
for(int j=1;j<=i/2;j++){
int product=products[j]*products[i-j];
if(product>max){max=product;}
}
products[i]=max;
}
return products[n];
}
}
当题目要求n可能很长,则考虑使用大整数BigInteger
贪婪算法解题思路
当然这题还可以使用贪婪算法,根据数学公式推导得知,当n>=5时,每次剪掉长度为3(当最后剩下长度为4时,剪成两段22的,因为22>3*1)。
class Solution {
public int cuttingRope(int n) {
if(n<=0){return 0;}//题目规定了m>1,所以长度0或1的绳子无法剪
if(n==1){return 1;}
if(n==2){return 1;}
if(n==3){return 2;}
int timesOf3=n/3;
if((n-timesOf3*3==1)){
timesOf3=timesOf3-1;//如果z最后长度为1,应该拿出一个3,形成2*2
}
int timesOf2=(n-timesOf3*3)/2;
return (int)Math.pow(3,timesOf3)*(int)Math.pow(2,timesOf2);
}
}